Web Mining
Web Structure Mining

In this practical work, you will learn some basics on network data analysis.
In Python, the 3 most popular librairies for network analysis are networkx,
igraph (also available in R), and graph-tool. In this practical work, we will
illustrate network analysis using the networkx library since it is easy-to-use
and offers a broad range of functionalities. However, for efficiency purpose
(when the network to analyze has more than 50K nodes), using the igraph
and graph-tool libraries is preferable.

Note that this tutorial is guided step by step. Its objective is not showing
you all the functionalities of this package but showing the most useful in-
stead.

The network we will use today is the Reuters terror news network. It is
based on all stories released during 66 consecutive days by the news agency
Reuters concerning the September 11 attack on the U.S., beginning at 9:00
AM EST 9/11/01. The vertices of a network are words (terms); there is an
edge between two words iff they appear in the same text unit (sentence).
The weight of an edge is its frequency. The network has n = 13332 vertices
(different words in the news) and m = 243447 edges, 50859 with value larger
than 1. There are no loops in the network.

This network is not a web network per se. However, whatever the type
of considered network, similar techniques can be applied. The way results
are interpreted is obviously related to the network.

The documentation of the package is available at: http://networkx.
readthedocs.org/en/networkx-1.11/
Important note. In this practical work, you are manipulating non native
libraries. To import these libraries, please download the zip file on my



website. Then, unzip it to the C:\\Python27 directory. To finish, your
python script must start with:

import sys,os
sys.path.append(”./1libs”)
sys.path.append(”./libs/decorator™)
import networkx

Introduction to the NETWORKX package

Once you have downloaded the data, they need to be read in python. Since
the date is in a particular format (Pajek format), a particular reading func-
tion is needed. Do not forget to import the networkx library first.

M = nx.read_pajek (”days.net”)

Print some statistics about the graph such as the number of nodes, the
number of edges, its density. Then print the set of edges. What observation
can you make according to the result of the output? Write a Python function
that convert this MultiGraph into a simple undirected graph. Remove the
edges having a weight lower than 2 as well as isolated nodes. How many
nodes and edges have been removed? Compare the density of this cleaned
graph to the original multigraph density. Now the data are clean, we can
run some more sophisticated treatments.

On the calculation of node-level indices

Let us now calculate some topological measures on the vertices. Read on
the documentation of the package networkx and calculate for each node:

e Its degree centrality

Its closeness centrality

Its betweeness centrality
e Its current flow closeness centrality

e Its current-flow betweenness centrality

Its eigenvector centrality

Its Page Rank




When possible, you will specify the weight parameter to be the weight
attribute of edges. For each centrality measure, find the 10 top nodes and
compare them. Are they similar?

Tip. The following Python code sorts a dictionary (according to the
attribute value) in descending order and prints the 3 top entries.

import operator

my_dict = {7a”:10,7b”:20,7¢c”:1,7d”:4,7e”:12,7£7:3,7g":11}

for n,c in sorted(my_dict.items (), key=operator.itemgetter (1),
reverse = True) [:3]:

—print "%s %i”%(n,c)

On the calculation of graph-level indices
We are now calculating a few graph-level indices:
e The density
e The center
e The diameter
e The eccentricity
e The periphery
e The radius
e The connected components (deduce if the graph is connected)
e The average clustering coefficient
e The k-components
e The cliques
e The degree pearson correlation coefficient
Read on the documentation of the package networkx and calculate these
measures.
On the discovery of communities within ego networks

It could be interesting to analyze if it exists several communities of words
within the network. Apply the k clique community detection technique on
the network with several values for k (15 and 20).




