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maps using clustering techniques
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Motivation

Trainability: if a good network solution exists with small training error,
how do we find it? And what makes a learning problem difficult?

Expressivity: what kinds of functions can a deep network express that
shallow networks cannot?

Generalizability: what principles do deep networks use to place
probability / make decisions in regions of input space with little data?

# Interpretability : once we have a trained network, how do we understand
what it does? How is the training data embedded in the weights?

Biological Plausibility: how can we do what we do within the constraints

of neurobiology? How can we interpret specific architectures used by the
brain?

Slide from Surya Ganguli, http://goo.gl/YmmqCg
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http://goo.gl/YmmqCg

Related work in speech: with DNNs

MNode 16 Node 191 Mode 165
aﬂ K T ] _HH I aa I T 1
2 ' ah g
ac 8o | gﬁ
¢ 7 % |8
b aw| a:r".lf ! 1
gl' 2_'; Ex y
?E . ?ﬁ mannerof alace of I
W uw | uw articulation 2
e . Il larticulation E"i
. | (labial)
wimanner of | w (closure) E
’i articulation EDE + ’Ir
It (closure) | I unvoiced ol
st 4 g 5k
i _ EE 1 fi
ﬁ%; chin; B ﬁa_
Bk 1 3 k b
B be | A i p § & °F
i d, t i n 1
I g+ t
'd' k | 'ﬁ‘ i H i rﬁ —l-m—
-0.2 0.2 0.2 Qo 02 0.2 o 0.2
time (s) time (=) time (s)

Source : Nagamine et al. Exploring How Deep Neural Networks Form Phonemic
Categories. INTERSPEECH 2015
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Related work in speech: with DNNs
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» Single nodes and populations of nodes in

. a layer are selective to phonetic features

» Node selectivity to phonetic features
becomes more explicit in deeper layers
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Related work in speech: with DNNs
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» Do these findings still hold with convolutional neural
networks?
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CNN Model used in this study

Convolution + MaxPooling

| |
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» BREF corpus: 100 hours, 120 native French speakers
» Train / Dev sets: 90%/10%, 1.8M /150K samples
» PER: 20% — good accuracy, allows the analysis of the model
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Study workflow

Does a CNN encode phonemic categories such as a DNN does?

» 100 input samples per phone feed-forwarded through the
network

» The outputs of each layer extracted and fed to either k-means
or spectral clustering, with optional front-end dimension
reduction

» Remark: 4-d tensors reshaped into 2-d matrices
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Study workflow

Does a CNN encode phonemic categories such as a DNN does?

» 100 input samples per phone feed-forwarded through the
network

» The outputs of each layer extracted and fed to either k-means
or spectral clustering, with optional front-end dimension
reduction

» Remark: 4-d tensors reshaped into 2-d matrices

» Experiment 1: fixed number of 33 clusters (French phone set
size)

» Experiment 2: optimal number of clusters determined
automatically
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Dimension reduction

» Principal Component Analysis (PCA) processed on the whole
activation maps: the number of principal components that

keeps at least 90% of the covariance matrix spectrum
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PCA projections of averaged activations
http://goo.gl/bbuZn9
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Dimension reduction

» t-Distributed Stochastic Neighbor Embedding (t-SNE):
relies on random walks on neighborhood graphs to extract the

local structure of the data and also reveal important global
structure

60 a0

I t-SNE projections of averaged activations
http://goo.gl/4f3nZ3
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Clustering methods

Consider the two most popular clustering techniques based on
either linear separation or non-linear separation:

» Kmeans computed with the Manhattan distance

» Spectral Clustering selects dominant eigenvectors of the
Gaussian affinity matrix in order to build a low-dimensional
data space wherein data points are grouped into clusters

Example of data set K-means method Clustering results :
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Clustering methods

Consider the two most popular clustering techniques based on
either linear separation or non-linear separation:
» Kmeans computed with the Manhattan distance

» Spectral Clustering selects dominant eigenvectors of the
Gaussian affinity matrix in order to build a low-dimensional
data space wherein data points are grouped into clusters

Choice of the number of clusters:

» Kmeans: within- and between-cluster sums of
point-to-centroid distances

» Spectral Clustering: within- and between-cluster affinity
measure
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Evaluation for experiment 1
Evaluate the resulting clusters with a fixed number of 33 clusters:

P.R
— tp , R:t—p, F:2—
tp + fp tp + fn P+ R

where tp, fp and fn respectively represent the number of true
positives, false positives and false negatives
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Experiment 1: 33 clusters
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— Phone-specific clusters become more explicit with layer depth
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Experiment 2: optimal number of clusters

7 clusters with SC

» 3 clusters for the vowels:

1. 93% of the medium to open vowels [a], [E], [9]
2. 83% of the closed vowels: [y], [i], [€]
3. 60% of the nasal vowels /a./, /o./, /U./

» 4 clusters for the consonants:

1. 92% of the nasal consonants: /n/, /m/ and /J/

2. 81% of the fricatives: /S/, /s/, /f/, /Z/

3. 76% of the rounded vowels /o/, /u/, /O/, /w/

4. 68% of the plosives consonants: /p/, /t/, /k/, /b/, /d/, /g/

k-means: similar clusters

— Broad phonetic classes are learned by the network
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Average activation map example of layer "convl”
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» This map encodes the mouth aperture (F1) but not the vowel
anteriority (F2)
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Average activation map example of layer " convl”

» Plosives

/d/

/b/
ﬁ WL

~ UNIVERSITE
=——m &

——= | (Bl ) TOULOUSE I
:,w..a B T PAUL SABATIER s

17/19




Conclusions and future work

Findings with CNNs similar to previous work by Nagamine with
DNNss:

1. Phone-specific clusters become more explicit with layer depth

2. Broad phonetic classes are learned by the network

Ongoing/future work:

» Studying the maps that do not correspond to phonemic
categories

» What is the "gist” of the phone representations for a CNN?
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Thank you!

Q&A

thomas.pellegrini@irit.fr
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