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Université de Toulouse, UPS, IRIT, Toulouse, France
{celine.manenti, thomas.pellegrini, julien.pinquier}@irit.fr

Abstract
These last years, there has been a regain of interest in unsuper-
vised sub-lexical and lexical unit discovery. Speech segmenta-
tion into phone-like units may be a first interesting step for such
a task. In this article, we report speech segmentation experi-
ments in Xitsonga, a less-represented language spoken in South
Africa. We chose to use convolutional neural networks (CNN)
with FBANK static coefficients as input. The models take bi-
nary decisions whether a boundary is present or not at each sig-
nal sliding frame. We compare the use of a model trained exclu-
sively on Xitsonga data to the use of a bootstrap model trained
on a larger corpus of another language, the BUCKEYE U.S.
English corpus. Using a two-convolution-layer model, a 79%
F-measure was obtained on BUCKEYE, with a 20 ms error tol-
erance. This performance is equal to the human inter-annotator
agreement rate. We then used this bootstrap model to segment
Xitsonga data and compared the results when adapting it with 1
to 20 minutes of Xitsonga data.
Index Terms: Convolutional Neural Networks, phonemes, seg-
mentation, under-resourced languages

1. Introduction
Speech segmentation is the process, human (cognitive) or auto-
matic (when performed by a machine), which aims to identify
the boundaries between units (words, syllables and phonemes)
in a registration or a voice stream. In automatic speech process-
ing is a subproblem that has various applications in automatic
speech recognition (ASR). Currently, the automatic segments
discovery to identify words or sub-lexical units was driven by
interest in unsupervised learning of these units, to build a pro-
nunciation lexicon by identifying words and phones inventory
without linguistic knowledge a priori [1] or to make connec-
tions with the human and language acquisition, particularly by
children [2].

In this context, we can mention the growing interest of the
scientific community for the automatic processing of languages
called little-feature, with the organization of conferences and
special sessions dedicated to this theme each year, such as the
Workshop on speech technologies for low-resourced languages
SLTU. To these are added challenges such as Zero Resource
Speech Challenge [3], which was to identify words or pseudo-
words and sub-word units from recordings only. The data used
in this challenge were the spontaneous speech corpus BUCK-
EYE, American English, and also a small corpus of a poorly
endowed language, Xitsonga, a language of South Africa.

Deep neural networks (DNN) became popular in signal pro-
cessing because of their excellent performances, especially in
ASR. According to the considered problem, they give similar
or better results than GMM. For example, [4] get an absolute
gain of 3% in classification of vowels. Neural networks have
the characteristic of being adaptable to data and the requested

task, approaching the form most suited to the problem. In [5],
networks were found to be able to mimic representations close
to the filter banks directly when taking time series as input sig-
nal.

In this work, we addressed the automatic segmentation into
phones by modeling the segment boundaries rather than the seg-
ments themselves, in a supervised fashion. We use convolu-
tional neural networks (CNN) as they were shown to outperform
DNN for a variety of ASR tasks [6]. After a brief description of
our system in Section 2, corpus and assessment metrics in Sec-
tion 3, we compare different configurations of models (number
of neurons, filters), and illustrate the influence of the data used
(small quantities, different language) when training neural net-
works. We also test the use of a network trained for English
segmentation on Xitsonga.

2. System description
Figure 1 represents the basic processing pipeline of our segmen-
tation system of speech into phone-like units. The three steps
are detailed in the following subsections.

Figure 1: Diagram of the segmentation system

2.1. Acoustic features

Following various tests on time and frequency features, we use
32 filter bank coefficients (FBANK), computed on 16 ms sliding
windows with a 4 ms hop size for better precision. We extract
the FBANK coefficients and give then as input to the neural net-
work. We recall that the process of extracting FBANK is based
on the transformation of the spectral amplitude through a fil-
ter bank characterized by triangular filters, linearly distributed
along the Mel scale. FBANK coefficients are the energy loga-
rithm of each filter.

2.2. Neural networks

CNN are very efficient in recognizing patterns: for example,
more than 99% of correct recognition on handwritten numbers
(MNIST) [7]. MLP can achieve similar results, but with more
layers: 12 layers fully connected against 6 (1 layer of convolu-
tion and 5 fully connected) for a CNN [8]. So, we chose to use
a CNN, after having tested MLP and DNN.

For the neural network, the segmentation task is a binary
classification task: presence or absence of boundary. Conven-
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tionally, when assigning a class to a given window, it first cal-
culates for each class the probability that the window belongs to
it, then it indicates as output the most probable class. However,
this last step presents two difficulties: the two classes (pres-
ence, absence of boundary) being divided into unequal propor-
tions (i.e. 1/5, 4/5), the output probabilities favor the absence of
boundary. In addition, when a window has a high probability of
being a boundary, its neighboring windows are likely to belong
to the same class. To avoid this, we post-process the probabili-
ties outputted by the classifier and based the final decision on a
method of local maxima identification.

2.3. Local maxima identification

Figure 2: Illustration of our local maxima identification on a
200-sample analysis windows

Figure 2 illustrates the process of finding local maxima. For
each analysis window, the neural network calculates a probabil-
ity that the window contains a boundary. Each recording re-
sults in a probability curve, of length 200 samples in Figure 2,
for example. To avoid detecting local variations due to noise,
we smooth the curve using a convolution with a small Ham-
ming window of size 5 samples. In order to select the more
important peaks (local maxima), we only keep those above a
threshold. The threshold value can vary as needed to favor pre-
cision, recall and F-measure. After few empirical tests, it ap-
peared that the F-measure is maximized when the number of
peaks detected is close to that expected, that is on average 1
phone every 70 ms for conversational English or 1 phone every
90 ms for read speech in Xitsonga.

3. Corpora and assessment metrics
We used the American English corpus called BUCKEYE [9],
composed of spontaneous speech (radio recordings) collected
from 40 different speakers with about 30 minutes of time speech
per speaker. This corpus is described in detail in [10]. The
quality of the manual phone-level transcriptions was assessed
by the creators of the corpus. An inter-annotator agreement was
reported: about 76% of correct labels and 62% in F-measure
for the manual segmentation with a 10 ms margin (tolerance).
The percentage rises to 79% for a tolerance of 20 ms [11]. The
median duration of phonemes is about 70 ms, with 60 differ-
ent phonemes annotated, exceeding the number of 40 phones
usually reported for English, especially because of peculiar pro-
nunciations that the creators of BUCKEYE chose to distinguish
in different classes, particularly for nasal sounds. Basing our-
selves on the cutting of the challenge Zero Resource Speech, we
divided the whole training sub-corpus in two parts: a training
sub-corpus BUCKEYE-TRAIN (75%, 10 hours, 20 speakers), a
development corpus BUCKEYE-DEV (25%, 3 hours, 6 speak-
ers), and we kept the official test portion BUCKEYE-TEST (5
hours, 12 speakers) as is.

We performed our segmentation experiments also on a less-
resourced language called Xitsonga, a language spoken in South

Africa. The Xitsonga corpus [12] is composed of short read sen-
tences recorded on smart-phones, outdoors. We used nearly 500
phrases, with a total of 10,000 examples of phonemes annotated
manually, from the same challenge database than the one used
in the ”Zero Resource Speech” challenge. The median duration
of phones is about 90 ms and there are 49 different phones. We
divided this corpus in a training corpus (Xitsonga-train) of 20
minutes and a testing corpus (Xitsonga-test) of 10 minutes.

4. Experiments
4.1. Comparison of different configurations on
BUCKEYE-DEV

In the context of this article, we used Theano [13] and
Lasagne [14] for the implementation of the models. Using the
input filter bank and with the learning hyper-parameters prop-
erly chosen (learning rate = 0.007, regularization coefficient =
0.9, minibatchs of size 2000), CNN proved relevant. So we tried
to optimize the settings of the network (number of layers and of
neurons, size of convolution filters).

CNN seems to be optimal for our task when using between
50 and 400 neurons for the fully connected layers and the num-
ber of convolution filters (also called maps) had an impact of
around 1% or 2%, absolute. For instance, increasing their num-
ber from 15 to 120 filters brings a 1.2% absolute gain. To ex-
plain this experimental result, we have analyzed the different
filters and we were able to verify that only 15 were active filters
for a size of 3x2.

The number of context windows turned out to be one of
the most important parameters: changes of phones are located
thank to the context. In our experiments, the results improve
significantly with the increasing size of context and we chose
an optimal value of 18 neighboring windows (84 ms), which is
close to the median duration of phones.

Figure 3: Five examples of CNN filters that seem to perform
derivation

The derivative and the second derivative of the FBANK fea-
tures are often used in ASR systems as input parameters but,
for our task, they did not provide any additional information to
the CNN compared to using static features only. To understand
why, we studied the filters of the first convolution layer. Fig-
ure 3 shows five examples of filters with a 3x2 size, with the
x-axis being the time axis. We can clearly see that these filters
approximate a derivation computation. Studying each of these
filters, we see that they approximately perform the following
calculations, for a time t and a signal s:

1. s(t)− s(t+ 1)

2. s(t− 1)− s(t+ 1)

3. − 1
2
s(t− 1)− 1

2
s(t) + s(t+ 1)

4. s(t− 1)− 1
2
s(t)− 1

2
s(t+ 1)

5. s(t− 1)− 1
2
s(t) + s(t+ 1).

The different approximations of these derivatives are
learned by the model directly from the input data, and there-
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Figure 4: Probabilities output CNN for segmentation on BUCKEYE-TEST. Top: temporal signal in blue with manually annotated
boundaries represented by vertical bars in purple. Bottom: spectrogram of the signal with manually annotated boundaries in purple
and CNN probabilities outputs represented by the black curve.

fore, static features seem to be the most appropriate input for
our task.

4.2. Results on BUCKEYE-TEST

The dimension of the input layer of our CNN is 18× 32, since
we use a 18-window context, and 32 FBANK coefficients per
window. The CNN is composed of two convolution layers with
3x2 filters (3 for time) and 2x2 filters with 40 filters. Each con-
volution layer is followed by 2× 2 max-pooling layer. Follows
a fully connected layer of 200 units before the 2-d output last
layer that gives the probability of having a boundary. With this
CNN, we obtained F-measures of 68% and 79% with a 10 ms
or 20 ms tolerance values, respectively. With a high threshold,
we can achieve an accuracy greater than 90% if we agree to
find only a sixth of the boundaries. Or, with a very low thresh-
old, we obtain a recall of 72% with half of erroneous detections
(see Table 1).

Table 1: BUCKEYE-TEST results for 3 threshold values and
10 ms of tolerance

Phone median size (ms) Precision Recall F-measure

52 0.52 0.72 0.61
72 0.71 0.65 0.68

272 0.94 0.16 0.27

Figure 4 is an example of a result obtained by the neural
network, showing the curve of probabilities superimposed to
the signal spectrogram. The high values of the curve actually
correspond to changes in the spectrum and are correlated with
the boundaries.

We analyzed the boundary detection rate of some phones
among the most frequent ones. We find that boundaries of
phones with a strong attack, such as [g] or [k] , are more easily
found that for [l] or [ô], who encounter more difficulties. We
also observed that boundaries between two consecutive vow-
els are difficult to retrieve, especially because is a slow and
small variation. In addition, annotators noticed that precision

of boundary depends of the size of the phone. For example,
boundaries between [oU] and [aI] are rarely found.

Globally speaking, the results are close to the inter-
annotator agreement between human annotators. Table 2 even
shows that our system is more accurate when it locates a true
boundary: we have a better F-measure for 10 ms of error tol-
erance and its increase between 10 ms and 20 ms is lower than
that observed between annotators. In comparison, for an error
tolerance of 20 ms, a random baseline is around 47%. For infor-
mation, a state-of-the-art result reported in [15] reaches 77% in
F-measure on another corpus: TIMIT, with 20 ms of tolerance.

Table 2: Comparison of F-measures between human annotators
and the CNN on BUCKEYE-TEST

Tolerance (ms) Random Annotators CNN

10 0.26 0.62 0.68
20 ms 0.47 0.79 0.79

4.3. Application to a poorly endowed language (Segmenta-
tion with little training data)

Segmentation is a ”simple” binary task. So we can expect that
little data would be sufficient to train a model, or that using a
model learned with a different language for which large datasets
are available could help detecting boundaries in a less-resourced
language.

From BUCKEYE to the Xitsonga corpus, the only param-
eter to adjust is the threshold applied to the output of the net-
work. Choosing the threshold value is equivalent to choosing
the median size of inferred segments. As can be seen in the Fig-
ure 5, the optimal phone duration that maximizes the F-measure
is close to the data-driven one.

Using our model trained on U.S. English, we obtained a
62% F-measure with a 20 ms error margin on the Xitsonga test
data. Performance was much lower with a 10 ms error mar-
gin. To better understand this decrease, we measured the evolu-
tion of the F-measure depending on the amount of BUCKEYE
training data. We observed that during training on BUCKEYE,
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Figure 5: Influence on the F-measure of the segment median
size, segments obtained with different thresholds. For refer-
ence, the real median size of the phones tested corpus is in-
dicated by dotted lines. Results for a network learned with
BUCKEYE-TRAIN only.

performance on BUCKEYE-TEST kept increasing when more
training epochs were performed, while performance quickly
reached a plateau when testing the model on the Xitsonga-test
data. In contrast, with a 20 ms tolerance, performance on both
English and Xitsonga data kept increasing. So it seems that
training on a different language helps locating boundaries ap-
proximately, with a lack of precision in time. In order to in-
crease precision in time, we tried to adapt the English model
with Xitsonga data.

Figure 6: Increase in F-measure based on the number of minutes
of Xitsonga for training.

Figure 6 represents the F-measure values obtained on the
Xitsonga-test corpus as a function of the number of minutes of
Xitsonga speech data used to adapt the bootstrap English model
(plain and dotted lines in blue) or used to train a model from
scratch (plain and dotted lines in red). For a margin of 20 ms
(plain lines), the bootstrap model outperforms the model trained
on Xitsonga data only. Adding only three minutes of Xitsonga
training data achieves a 65% of F-measure, a value close to the
best performance obtained with 20 minutes.

Adding a few minutes of training data greatly improved
these results, as shown in the figure. Indeed, only three minutes
brought about 10% absolute improvement in F-measure for a
10 ms margin. But using only these three minutes of Xitsonga
allows to match the results achieved by the bootstrap English
model for the same margin. The baseline English model visibly
seems to be more useful with a larger margin of error (20 ms).
There are several possible ways to adapt the bootstrap model.
Transfer learning, or more simply model adaptation, is usually

performed by retraining the deepest layers of a network. In
our case, simply retraining the output layer did not provide any
improvement. Improvements only occurred when retraining at
least the last dense hidden layer. Furthermore, retraining all the
layers was the best option according to the tests we did.

Still studying figure 6, we see that adapting with 20 min-
utes of Xitsonga outperforms from about 2% absolute the model
trained from scratch. Thanks to this Xitsonga-train corpus, we
get 52% of F-measure for 10 ms and 70% for 20 ms, that is re-
spectively 16% and 9% less than BUCKEYE-TEST. The curves
show that convergence is not finished and that more data could
improve the results. Another parameter to consider is the mean
duration of the phones. Indeed, the mean duration of the Xit-
songa phones being superior by a 2/7 factor compared to the
mean duration of the English phones from BUCKEYE, we can
assume that it penalizes the results on Xitsonga for a given mar-
gin of error.

Probably related to the difference in mean duration of their
phones, we noticed that the probabilities of the boundary pre-
dictions were lower for the network trained on Xitsonga only,
compared to the bootstrap model. We can perhaps explain
this observation because of the smaller ratio of the number
of boundaries/non-boundaries in the Xitsonga corpus than in
BUCKEYE, due to longer phones in Xitsonga. The network
therefore sees a lower proportion of boundaries and tends to as-
sign lower probabilities to the boundary class. We also found
that the two networks detect approximately the same bound-
aries. Despite the difference in scale on the borders, the proba-
bilities of the two models have a 0.91 correlation rate.

5. Conclusions
In this article, we reported speech segmentation experiments at
phone-level using CNN. We envisaged the segmentation task as
a binary classification problem in which the classifier has to de-
cide on the presence of an eventual phone boundary based on
FBANK coefficients as input. On the American English record-
ings of the BUCKEYE corpus, a CNN with two convolution
layers achieved some remarkable results: 68% of F-measure
for our best automatic segmentation system versus 62% for the
inter-annotator agreement with a tolerance of 10 ms on the loca-
tion of phones boundaries. Moreover, the models showed good
adaptation to difficult cases: little training data and application
to another less-resourced language, Xitsonga, a language spo-
ken in South Africa. We used a CNN trained on BUCKEYE
as a bootstrap to segment Xitsonga speech data. This model
achieved a 62% F-measure with a 20 ms error margin on this
data, which shows that using a model trained on a given lan-
guage can be used to segment speech from another language.
Then, we adapted the bootstrap model with little Xitsonga data.
Using only 3 minutes of adapting data brought a 10% F-measure
improvement with a 10 ms error tolerance. We plan to confirm
our findings by using larger quantities of adapting data and also
by testing the bootstrap models on other languages. For the seg-
mentation of under-resourced languages, such as Xitsonga, we
also plan to explore semi-supervised learning, i.e. segmenting
unseen data and then re-using this data as training data. Another
direction would be to investigate better feature representations
with techniques such as auto-encoders.
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