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Introduction

● General Matrix Multiplication (GEMM) used for scientific simulations and 
ML-based applications

● Heavily optimized in HPC domain
○ Blocked matrix multiplication (improved cache usage)
○ SIMD extensions (vector instructions)

● Safety-critical real-time systems ⇒ certification standards
○ Traceability
○ Timing-predictability

● Objective: optimized and certifiable GEMM library 
○ Analyzable and traceable code 

■ No dynamic memory management
■ No compiler optimization

○ Choice of blocking parameters to improve predictability
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Blocked GEMM 

● Goal : compute C = A . B + C
● Improve spatial and temporal locality in caches

○ Divide A, B and C in blocks (submatrices) that fit in the various levels of cache

● Use vector instructions
● 3 routines:

○ Macro-kernel (shaping the blocks, driving the algorithm)
○ Micro-kernel (computing partial products)
○ Packing (copying and reordering elements in the blocks)
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Blocked GEMM (macro-kernel) 
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Blocked GEMM (macro-kernel)
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● Call micro-kernel on micro-panels 
○ → compute micro-tile



Blocked GEMM (macro-kernel)
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● Switch to next micro-panel of A
○ → compute next micro-tile
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● Switch to next micro-panel of A
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Blocked GEMM (macro-kernel)
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● Switch to next micro-panel of A
○ → compute next micro-tile



Blocked GEMM (macro-kernel)
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● Switch to next micro-panel of B
○ → compute next micro-tile



Blocked GEMM (macro-kernel)
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● Switch to next micro-panel of B
○ → compute next micro-tile



Blocked GEMM (Micro-kernel)
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Blocked GEMM (Micro-kernel)
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● Loading elements in SIMD registers
○ Need to re-order them
○ → Packing

Blocked GEMM (Micro-kernel)
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Blocked GEMM (Packing B)
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Blocked GEMM (Packing B)
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Blocked GEMM (Packing B)

16



Blocked GEMM (Packing B)
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Blocked GEMM (Packing B)
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Contributions

● Contribution 1: Traceable Blocked GEMM library
○ No compiler optimization
○ Optimized NEON code, no intrinsics

● Contribution 2: Cache miss prediction
○ Implementation rules for predictability
○ Formulas for worst-case cache misses 

● Target = Texas Keystone II
○ 1 ARM Cortex A15 (ARM v7)
○ NEON extension: 16 128-bits registers (4 FP32 elements each)
○ L1D: 32KB, 64 Bytes cache line, 2-ways associative (256 sets), LRU
○ L2D: 4MB, 64 Bytes cache line, 16-ways associative (4096 sets), random

19



Library code optimization

● Force register usage in C code 
○ Reduce pressure on the stack

● Select NEON instructions in assembly code blocks
○ With -O0, ARM NEON intrinsics translation by compiler is not efficient

(No NEON) (No NEON)
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Improving predictability

● Objective: statically bound memory accesses and cache misses
○ For each library routine (packing A, packing B, macro kernel)
○ Take advantage of regular code (no if-then-else)

● These values can then be used as input to static WCET analyser
○ Out of scope
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Improving predictability

● Corollary (accesses to matrix slices = complete blocks in column)
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● Corollary (accesses to matrix slices = complete blocks in column)

Improving predictability
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● Packing B
○ Rule 1: Align Matrix B and packing buffer to cache block boundaries
○ Rule 2: Pad rows of matrix B to an odd number of complete cache blocks (if necessary) 
○ Rule 3: Choose slice height equal to number of cache sets

Improving predictability
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1 miss
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1 miss + 1 miss
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Improving predictability
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● Packing B
○ Rule 1: Align Matrix B and packing buffer to cache block boundaries
○ Rule 2: Pad rows of matrix B to an odd number of complete cache blocks (if necessary) 
○ Rule 3: Choose slice height equal to number of cache sets

2 misses + 1 miss



Improving predictability
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● Packing B
○ Rule 1: Align Matrix B and packing buffer to cache block boundaries
○ Rule 2: Pad rows of matrix B to an odd number of complete cache blocks (if necessary) 
○ Rule 3: Choose slice height equal to number of cache sets

8 misses + 4 misses

…



Improving predictability
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● Packing B
○ Rule 1: Align Matrix B and packing buffer to cache block boundaries
○ Rule 2: Pad rows of matrix B to an odd number of complete cache blocks (if necessary) 
○ Rule 3: Choose slice height equal to number of cache sets

8 misses + 5 misses

…



● Packing B
○ Exact prediction of number of memory accesses and L1 cache misses
○ Cache miss bound is theoretical minimum

● Packing A is handled in a similar fashion

Improving predictability
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8 misses + 8 misses
i.e. number of blocks



● Macro kernel
○ Rule 1: Matrix C is aligned to a cache block boundary
○ Rule 2: Matrix C is padded if necessary
○ Prop. 1: Buffer A, Buffer B aligned to a cache block boundary
○ Prop. 2: Micro-panels of A are contiguous in memory (same for B)
○ Prop. 3: Successive rows of each Cr(i) mapped to distinct cache sets
○ Prop. 4: All micro-panels of A and B have the same size

● Cr(0) += Ar(0)*Br(0);
● Cr(1) += Ar(1)*Br(0);
● Cr(2) += Ar(2)*Br(0);
● Cr(3) += Ar(3)*Br(0);
● …
● Cr(9) += Ar(1)*Br(2);
● …

Improving predictability
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Improving predictability

Reuse Br(0)
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● Macro kernel
○ Cr(0) += Ar(0)*Br(0); // R-Cr(0); R-Ar(0)||R-Br(0);W-Cr(0); 
○ Cr(1) += Ar(1)*Br(0); // R-Cr(1); R-Ar(1)||R-Br(0);W-Cr(1); 
○ Cr(2) += Ar(2)*Br(0);
○ Cr(3) += Ar(3)*Br(0);

Improving predictability
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Number of cache 
misses: Load Cr, Load 
Br, Load Ar + reload 
evicted blocks
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Case 1: Br gets old 
because of Ar and is 
evicted by Cr
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Case 3: Cr gets evicted 
because of Ar and Br
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Case 3: Cr gets evicted 
because of Ar and Br



● For packing A and B, formulas predict misses with max 0.03% overhead
● For macro-kernel, overhead of 5% on average

○ Except particular case with small blocks Ac and Cc (up to 13% overhead)
● Less than 5% overhead in average execution time
● For packing B, L1D refill reduced by up to 60% in the best case

Improving predictability
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● Predictable and traceable yet efficient implementation of a blocked GEMM 
algorithm

○ Execution time reduced by up to 99% compared to unoptimized code, with no compiler 
optimization

○ L1D cache misses over-estimated by 5% on average, except for one matrix configuration
○ Cost of predictability is less than 5%

● Future work
○ Extend our formulas to predictable L2 caches
○ Refine analysis for the problematic case
○ Automatic code generation targeting particular architectures and matrix configurations

■ Instead of generic library

Conclusion
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Thank you for your attention

Questions ?
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Blocked GEMM (Micro-kernel)
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Outer product



Blocked GEMM (Micro-kernel)

56



Blocked GEMM (Micro-kernel)
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Blocked GEMM (Micro-kernel)
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Blocked GEMM (Micro-kernel)
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Blocked GEMM (macro-kernel)
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● Switch to next panel of A
○ → compute next block of C



● Switch back to previous panels of A
○ Use next blocks in panels
○ → accumulate in blocks of C

Blocked GEMM (macro-kernel)
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Blocked GEMM (Packing A)
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Blocked GEMM (Packing A)
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Blocked GEMM (Packing A)
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Blocked GEMM (Packing A)
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Blocked GEMM (Packing A)
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Blocked GEMM (Packing A)
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Blocked GEMM (Packing A)
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Blocked GEMM (Packing A)
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Blocked GEMM (Packing A)
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Parameter tuning

● Traditionally, the blocks dimensions are chosen empirically so that:
○ Micro-panels Br stay in the L1 cache, one at a time
○ The packed buffer Ãc stays in the L2 cache
○ The packed buffer Bc stays in the L3 cache, if any

● Low et al. [1] proposed an analytical method to tune the parameters 
automatically to reduce execution time

○ Here, same philosophy for predictability

~

[1] T. M. Low, F. D. Igual, T. M. Smith, and E. S. Quintana-Orti, “Analytical modeling is enough for high-performance BLIS” 

ACM Transactions on Mathematical Software, vol. 43, no. 2, pp. 1–18, Aug. 2016 71



Improving predictability

● General theorem (strided accesses in a matrix)
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Improving predictability

● General theorem (strided accesses in a matrix)
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Improving predictability

● General theorem (strided accesses in a matrix)
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Improving predictability

● General theorem (mapping a matrix to a data cache with sLi sets)
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● Packing B
○ Rule 1: Align Matrix B and packing buffer to cache block boundaries
○ Rule 2: Pad rows of matrix B to an odd number of complete cache blocks (if necessary) 
○ Rule 3: Choose vector width as a divisor of cache block size
○ Rule 4: Choose slice height equal to number of cache sets

Improving predictability
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