
A predictable SIMD library
for GEMM routines

Iryna De Albuquerque Silva, Thomas Carle, Adrien Gauffriau, Victor Jegu, Claire Pagetti

RTAS, May 14th 2024

Introduction

● General Matrix Multiplication (GEMM) used for scientific simulations and
ML-based applications

● Heavily optimized in HPC domain
○ Blocked matrix multiplication (improved cache usage)
○ SIMD extensions (vector instructions)

● Safety-critical real-time systems ⇒ certification standards
○ Traceability
○ Timing-predictability

● Objective: optimized and certifiable GEMM library
○ Analyzable and traceable code

■ No dynamic memory management
■ No compiler optimization

○ Choice of blocking parameters to improve predictability
2

Blocked GEMM

● Goal : compute C = A . B + C
● Improve spatial and temporal locality in caches

○ Divide A, B and C in blocks (submatrices) that fit in the various levels of cache

● Use vector instructions
● 3 routines:

○ Macro-kernel (shaping the blocks, driving the algorithm)
○ Micro-kernel (computing partial products)
○ Packing (copying and reordering elements in the blocks)

3

Blocked GEMM (macro-kernel)

4

Blocked GEMM (macro-kernel)

5

● Call micro-kernel on micro-panels
○ → compute micro-tile

Blocked GEMM (macro-kernel)

6

● Switch to next micro-panel of A
○ → compute next micro-tile

Blocked GEMM (macro-kernel)

7

● Switch to next micro-panel of A
○ → compute next micro-tile

Blocked GEMM (macro-kernel)

8

● Switch to next micro-panel of A
○ → compute next micro-tile

Blocked GEMM (macro-kernel)

9

● Switch to next micro-panel of B
○ → compute next micro-tile

Blocked GEMM (macro-kernel)

10

● Switch to next micro-panel of B
○ → compute next micro-tile

Blocked GEMM (Micro-kernel)

11

Blocked GEMM (Micro-kernel)

12

● Loading elements in SIMD registers
○ Need to re-order them
○ → Packing

Blocked GEMM (Micro-kernel)

13

Blocked GEMM (Packing B)

14

Blocked GEMM (Packing B)

15

Blocked GEMM (Packing B)

16

Blocked GEMM (Packing B)

17

Blocked GEMM (Packing B)

18

Contributions

● Contribution 1: Traceable Blocked GEMM library
○ No compiler optimization
○ Optimized NEON code, no intrinsics

● Contribution 2: Cache miss prediction
○ Implementation rules for predictability
○ Formulas for worst-case cache misses

● Target = Texas Keystone II
○ 1 ARM Cortex A15 (ARM v7)
○ NEON extension: 16 128-bits registers (4 FP32 elements each)
○ L1D: 32KB, 64 Bytes cache line, 2-ways associative (256 sets), LRU
○ L2D: 4MB, 64 Bytes cache line, 16-ways associative (4096 sets), random

19

Library code optimization

● Force register usage in C code
○ Reduce pressure on the stack

● Select NEON instructions in assembly code blocks
○ With -O0, ARM NEON intrinsics translation by compiler is not efficient

(No NEON) (No NEON)

20

Improving predictability

● Objective: statically bound memory accesses and cache misses
○ For each library routine (packing A, packing B, macro kernel)
○ Take advantage of regular code (no if-then-else)

● These values can then be used as input to static WCET analyser
○ Out of scope

21

Improving predictability

● Corollary (accesses to matrix slices = complete blocks in column)

22

● Corollary (accesses to matrix slices = complete blocks in column)

Improving predictability

23

● Packing B
○ Rule 1: Align Matrix B and packing buffer to cache block boundaries
○ Rule 2: Pad rows of matrix B to an odd number of complete cache blocks (if necessary)
○ Rule 3: Choose slice height equal to number of cache sets

Improving predictability

24…

● Packing B
○ Rule 1: Align Matrix B and packing buffer to cache block boundaries
○ Rule 2: Pad rows of matrix B to an odd number of complete cache blocks (if necessary)
○ Rule 3: Choose slice height equal to number of cache sets

Improving predictability

25…

1 miss

● Packing B
○ Rule 1: Align Matrix B and packing buffer to cache block boundaries
○ Rule 2: Pad rows of matrix B to an odd number of complete cache blocks (if necessary)
○ Rule 3: Choose slice height equal to number of cache sets

Improving predictability

26…

1 miss + 1 miss

● Packing B
○ Rule 1: Align Matrix B and packing buffer to cache block boundaries
○ Rule 2: Pad rows of matrix B to an odd number of complete cache blocks (if necessary)
○ Rule 3: Choose slice height equal to number of cache sets

Improving predictability

27…

1 miss + 1 miss

Improving predictability

28…

● Packing B
○ Rule 1: Align Matrix B and packing buffer to cache block boundaries
○ Rule 2: Pad rows of matrix B to an odd number of complete cache blocks (if necessary)
○ Rule 3: Choose slice height equal to number of cache sets

2 misses + 1 miss

Improving predictability

29

● Packing B
○ Rule 1: Align Matrix B and packing buffer to cache block boundaries
○ Rule 2: Pad rows of matrix B to an odd number of complete cache blocks (if necessary)
○ Rule 3: Choose slice height equal to number of cache sets

8 misses + 4 misses

…

Improving predictability

30

● Packing B
○ Rule 1: Align Matrix B and packing buffer to cache block boundaries
○ Rule 2: Pad rows of matrix B to an odd number of complete cache blocks (if necessary)
○ Rule 3: Choose slice height equal to number of cache sets

8 misses + 5 misses

…

● Packing B
○ Exact prediction of number of memory accesses and L1 cache misses
○ Cache miss bound is theoretical minimum

● Packing A is handled in a similar fashion

Improving predictability

31…

8 misses + 8 misses
i.e. number of blocks

● Macro kernel
○ Rule 1: Matrix C is aligned to a cache block boundary
○ Rule 2: Matrix C is padded if necessary
○ Prop. 1: Buffer A, Buffer B aligned to a cache block boundary
○ Prop. 2: Micro-panels of A are contiguous in memory (same for B)
○ Prop. 3: Successive rows of each Cr(i) mapped to distinct cache sets
○ Prop. 4: All micro-panels of A and B have the same size

● Cr(0) += Ar(0)*Br(0);
● Cr(1) += Ar(1)*Br(0);
● Cr(2) += Ar(2)*Br(0);
● Cr(3) += Ar(3)*Br(0);
● …
● Cr(9) += Ar(1)*Br(2);
● …

Improving predictability

32

● Macro kernel
○ Rule 1: Matrix C is aligned to a cache block boundary
○ Rule 2: Matrix C is padded if necessary
○ Prop. 1: Buffer A, Buffer B aligned to a cache block boundary
○ Prop. 2: Micro-panels of A are contiguous in memory (same for B)
○ Prop. 3: Successive rows of each Cr(i) mapped to distinct cache sets
○ Prop. 4: All micro-panels of A and B have the same size

● Cr(0) += Ar(0)*Br(0);
● Cr(1) += Ar(1)*Br(0);
● Cr(2) += Ar(2)*Br(0);
● Cr(3) += Ar(3)*Br(0);
● …
● Cr(9) += Ar(1)*Br(2);
● …

Improving predictability

Reuse Br(0)

33

● Macro kernel
○ Cr(0) += Ar(0)*Br(0); // R-Cr(0); R-Ar(0)||R-Br(0);W-Cr(0);
○ Cr(1) += Ar(1)*Br(0); // R-Cr(1); R-Ar(1)||R-Br(0);W-Cr(1);
○ Cr(2) += Ar(2)*Br(0);
○ Cr(3) += Ar(3)*Br(0);

Improving predictability

34

● Macro kernel
○ Cr(0) += Ar(0)*Br(0); // R-Cr(0); R-Ar(0)||R-Br(0);W-Cr(0);
○ Cr(1) += Ar(1)*Br(0); // R-Cr(1); R-Ar(1)||R-Br(0);W-Cr(1);
○ Cr(2) += Ar(2)*Br(0);
○ Cr(3) += Ar(3)*Br(0);

Improving predictability

35

● Macro kernel
○ Cr(0) += Ar(0)*Br(0); // R-Cr(0); R-Ar(0)||R-Br(0);W-Cr(0);
○ Cr(1) += Ar(1)*Br(0); // R-Cr(1); R-Ar(1)||R-Br(0);W-Cr(1);
○ Cr(2) += Ar(2)*Br(0);
○ Cr(3) += Ar(3)*Br(0);

Improving predictability

36

● Macro kernel
○ Cr(0) += Ar(0)*Br(0); // R-Cr(0); R-Ar(0)||R-Br(0);W-Cr(0);
○ Cr(1) += Ar(1)*Br(0); // R-Cr(1); R-Ar(1)||R-Br(0);W-Cr(1);
○ Cr(2) += Ar(2)*Br(0);
○ Cr(3) += Ar(3)*Br(0);

Improving predictability

37

● Macro kernel
○ Cr(0) += Ar(0)*Br(0); // R-Cr(0); R-Ar(0)||R-Br(0);W-Cr(0);
○ Cr(1) += Ar(1)*Br(0); // R-Cr(1); R-Ar(1)||R-Br(0);W-Cr(1);
○ Cr(2) += Ar(2)*Br(0);
○ Cr(3) += Ar(3)*Br(0);

Improving predictability

38

● Macro kernel
○ Cr(0) += Ar(0)*Br(0); // R-Cr(0); R-Ar(0)||R-Br(0);W-Cr(0);
○ Cr(1) += Ar(1)*Br(0); // R-Cr(1); R-Ar(1)||R-Br(0);W-Cr(1);
○ Cr(2) += Ar(2)*Br(0);
○ Cr(3) += Ar(3)*Br(0);

Improving predictability

39

● Macro kernel
○ Cr(0) += Ar(0)*Br(0); // R-Cr(0); R-Ar(0)||R-Br(0);W-Cr(0);
○ Cr(1) += Ar(1)*Br(0); // R-Cr(1); R-Ar(1)||R-Br(0);W-Cr(1);
○ Cr(2) += Ar(2)*Br(0);
○ Cr(3) += Ar(3)*Br(0);

Improving predictability

40

● Macro kernel
○ Cr(0) += Ar(0)*Br(0); // R-Cr(0); R-Ar(0)||R-Br(0);W-Cr(0);
○ Cr(1) += Ar(1)*Br(0); // R-Cr(1); R-Ar(1)||R-Br(0);W-Cr(1);
○ Cr(2) += Ar(2)*Br(0);
○ Cr(3) += Ar(3)*Br(0);

Improving predictability

41

● Macro kernel
○ Cr(0) += Ar(0)*Br(0); // R-Cr(0); R-Ar(0)||R-Br(0);W-Cr(0);
○ Cr(1) += Ar(1)*Br(0); // R-Cr(1); R-Ar(1)||R-Br(0);W-Cr(1);
○ Cr(2) += Ar(2)*Br(0);
○ Cr(3) += Ar(3)*Br(0);

Improving predictability

42

Number of cache
misses: Load Cr, Load
Br, Load Ar + reload
evicted blocks

● Macro kernel
○ Cr(0) += Ar(0)*Br(0); // R-Cr(0); R-Ar(0)||R-Br(0);W-Cr(0);
○ Cr(1) += Ar(1)*Br(0); // R-Cr(1); R-Ar(1)||R-Br(0);W-Cr(1);
○ Cr(2) += Ar(2)*Br(0);
○ Cr(3) += Ar(3)*Br(0);

Improving predictability

Case 1: Br gets old
because of Ar and is
evicted by Cr

43

● Macro kernel
○ Cr(0) += Ar(0)*Br(0); // R-Cr(0); R-Ar(0)||R-Br(0);W-Cr(0);
○ Cr(1) += Ar(1)*Br(0); // R-Cr(1); R-Ar(1)||R-Br(0);W-Cr(1);
○ Cr(2) += Ar(2)*Br(0);
○ Cr(3) += Ar(3)*Br(0);

Improving predictability

44

Case 1: Br gets old
because of Ar and is
evicted by Cr

● Macro kernel
○ Cr(0) += Ar(0)*Br(0); // R-Cr(0); R-Ar(0)||R-Br(0);W-Cr(0);
○ Cr(1) += Ar(1)*Br(0); // R-Cr(1); R-Ar(1)||R-Br(0);W-Cr(1);
○ Cr(2) += Ar(2)*Br(0);
○ Cr(3) += Ar(3)*Br(0);

Improving predictability

45

Case 2: Br gets old
because of Cr and
evicted by Ar

● Macro kernel
○ Cr(0) += Ar(0)*Br(0); // R-Cr(0); R-Ar(0)||R-Br(0);W-Cr(0);
○ Cr(1) += Ar(1)*Br(0); // R-Cr(1); R-Ar(1)||R-Br(0);W-Cr(1);
○ Cr(2) += Ar(2)*Br(0);
○ Cr(3) += Ar(3)*Br(0);

Improving predictability

46

Case 2: Br gets old
because of Cr and
evicted by Ar

● Macro kernel
○ Cr(0) += Ar(0)*Br(0); // R-Cr(0); R-Ar(0)||R-Br(0);W-Cr(0);
○ Cr(1) += Ar(1)*Br(0); // R-Cr(1); R-Ar(1)||R-Br(0);W-Cr(1);
○ Cr(2) += Ar(2)*Br(0);
○ Cr(3) += Ar(3)*Br(0);

Improving predictability

47

Case 2: Br gets old
because of Cr and
evicted by Ar

● Macro kernel
○ Cr(0) += Ar(0)*Br(0); // R-Cr(0); R-Ar(0)||R-Br(0);W-Cr(0);
○ Cr(1) += Ar(1)*Br(0); // R-Cr(1); R-Ar(1)||R-Br(0);W-Cr(1);
○ Cr(2) += Ar(2)*Br(0);
○ Cr(3) += Ar(3)*Br(0);

Improving predictability

48

Case 3: Cr gets evicted
because of Ar and Br

● Macro kernel
○ Cr(0) += Ar(0)*Br(0); // R-Cr(0); R-Ar(0)||R-Br(0);W-Cr(0);
○ Cr(1) += Ar(1)*Br(0); // R-Cr(1); R-Ar(1)||R-Br(0);W-Cr(1);
○ Cr(2) += Ar(2)*Br(0);
○ Cr(3) += Ar(3)*Br(0);

Improving predictability

49

Case 3: Cr gets evicted
because of Ar and Br

● Macro kernel
○ Cr(0) += Ar(0)*Br(0); // R-Cr(0); R-Ar(0)||R-Br(0);W-Cr(0);
○ Cr(1) += Ar(1)*Br(0); // R-Cr(1); R-Ar(1)||R-Br(0);W-Cr(1);
○ Cr(2) += Ar(2)*Br(0);
○ Cr(3) += Ar(3)*Br(0);

Improving predictability

50

Case 3: Cr gets evicted
because of Ar and Br

● Macro kernel
○ Cr(0) += Ar(0)*Br(0); // R-Cr(0); R-Ar(0)||R-Br(0);W-Cr(0);
○ Cr(1) += Ar(1)*Br(0); // R-Cr(1); R-Ar(1)||R-Br(0);W-Cr(1);
○ Cr(2) += Ar(2)*Br(0);
○ Cr(3) += Ar(3)*Br(0);

Improving predictability

51

Case 3: Cr gets evicted
because of Ar and Br

● For packing A and B, formulas predict misses with max 0.03% overhead
● For macro-kernel, overhead of 5% on average

○ Except particular case with small blocks Ac and Cc (up to 13% overhead)
● Less than 5% overhead in average execution time
● For packing B, L1D refill reduced by up to 60% in the best case

Improving predictability

52

● Predictable and traceable yet efficient implementation of a blocked GEMM
algorithm

○ Execution time reduced by up to 99% compared to unoptimized code, with no compiler
optimization

○ L1D cache misses over-estimated by 5% on average, except for one matrix configuration
○ Cost of predictability is less than 5%

● Future work
○ Extend our formulas to predictable L2 caches
○ Refine analysis for the problematic case
○ Automatic code generation targeting particular architectures and matrix configurations

■ Instead of generic library

Conclusion

53

Thank you for your attention

Questions ?

54

Blocked GEMM (Micro-kernel)

55

Outer product

Blocked GEMM (Micro-kernel)

56

Blocked GEMM (Micro-kernel)

57

Blocked GEMM (Micro-kernel)

58

Blocked GEMM (Micro-kernel)

59

Blocked GEMM (macro-kernel)

60

● Switch to next panel of A
○ → compute next block of C

● Switch back to previous panels of A
○ Use next blocks in panels
○ → accumulate in blocks of C

Blocked GEMM (macro-kernel)

61

Blocked GEMM (Packing A)

62

Blocked GEMM (Packing A)

63

Blocked GEMM (Packing A)

64

Blocked GEMM (Packing A)

65

Blocked GEMM (Packing A)

66

Blocked GEMM (Packing A)

67

Blocked GEMM (Packing A)

68

Blocked GEMM (Packing A)

69

Blocked GEMM (Packing A)

70

Parameter tuning

● Traditionally, the blocks dimensions are chosen empirically so that:
○ Micro-panels Br stay in the L1 cache, one at a time
○ The packed buffer Ãc stays in the L2 cache
○ The packed buffer Bc stays in the L3 cache, if any

● Low et al. [1] proposed an analytical method to tune the parameters
automatically to reduce execution time

○ Here, same philosophy for predictability

~

[1] T. M. Low, F. D. Igual, T. M. Smith, and E. S. Quintana-Orti, “Analytical modeling is enough for high-performance BLIS”

ACM Transactions on Mathematical Software, vol. 43, no. 2, pp. 1–18, Aug. 2016 71

Improving predictability

● General theorem (strided accesses in a matrix)

72

Improving predictability

● General theorem (strided accesses in a matrix)

73

Improving predictability

● General theorem (strided accesses in a matrix)

74

Improving predictability

● General theorem (mapping a matrix to a data cache with sLi sets)

75

● Packing B
○ Rule 1: Align Matrix B and packing buffer to cache block boundaries
○ Rule 2: Pad rows of matrix B to an odd number of complete cache blocks (if necessary)
○ Rule 3: Choose vector width as a divisor of cache block size
○ Rule 4: Choose slice height equal to number of cache sets

Improving predictability

76

● Packing B
○ Rule 1: Align Matrix B and packing buffer to cache block boundaries
○ Rule 2: Pad rows of matrix B to an odd number of complete cache blocks (if necessary)
○ Rule 3: Choose vector width as a divisor of cache block size
○ Rule 4: Choose slice height equal to number of cache sets

Improving predictability

77

● Packing B
○ Rule 1: Align Matrix B and packing buffer to cache block boundaries
○ Rule 2: Pad rows of matrix B to an odd number of complete cache blocks (if necessary)
○ Rule 3: Choose vector width as a divisor of cache block size
○ Rule 4: Choose slice height equal to number of cache sets

Improving predictability

78

● Packing B
○ Rule 1: Align Matrix B and packing buffer to cache block boundaries
○ Rule 2: Pad rows of matrix B to an odd number of complete cache blocks (if necessary)
○ Rule 3: Choose vector width as a divisor of cache block size
○ Rule 4: Choose slice height equal to number of cache sets

Improving predictability

79

● Packing B
○ Rule 1: Align Matrix B and packing buffer to cache block boundaries
○ Rule 2: Pad rows of matrix B to an odd number of complete cache blocks (if necessary)
○ Rule 3: Choose vector width as a divisor of cache block size
○ Rule 4: Choose slice height equal to number of cache sets

Improving predictability

80

