
An Error-Based Measure for Concept Drift
Detection and Characterization

Antoine Bugnicourt1,2[0000−0002−5035−1904], Riad Mokadem1, Franck Morvan1,
and Nadia Bebeshina2

1 Institut de Recherche en Informatique de Toulouse (IRIT)
2 MeetDeal https://meetdeal.fr/

Abstract. Continual learning is an increasingly studied field, aiming at
regulating catastrophic forgetting for online machine learning tasks. In
this article, we propose a prediction error measure for continual learning,
to detect concept drift induced from learned data input before the learn-
ing step. In addition, we check this measure’s ability for characterization
of the drift. For these purposes, we propose an algorithm to compute the
proposed measure on a data stream while also estimating concept drift.
Then, we calculate the correlation coefficients between this estimate and
our measurement, using time series analysis. To validate our proposal,
we base our experiments on simulated streams of metadata collected
from an industrial dataset corresponding to real conversation data. The
results show that the proposed measure constitutes a reliable criterion
for concept drift detection. They also show that a characterization of
the drift relative to components of the stream is possible thanks to the
proposed measure.

Keywords: Online learning · Continual learning · Concept drift · Change
detection

1 Introduction

In the last years, successive advancements in machine learning allowed its use
in multiple fields. The most common approach is batch learning, with multiple
learning steps over a fixed dataset. Some tasks may require to learn from a con-
tinuous stream of data. Among those, there are applications requiring plasticity,
i.e. the learning model being able to take into account concept drift: changes in
the distribution of data [1,11]. For batch learning, this creates an over-cost on
both storage (the dataset must be updated with every new input) and compu-
tation time (the model must be re-trained regularly on the dataset) [17].

In this context, online learning comes as an alternative to batch learning; the
model learns iteratively on a data stream, without the need to store data. This
new approach allows for change detection and integration in real time. However,
the learning model will tend to favoritize newly learned knowledge, and to forget

https://meetdeal.fr/

past knowledge. In the literature, this phenomenon is named catastrophic for-
getting [20,24]. Catastrophic forgetting infringes on model stability, the model’s
ability to retain knowledge.

To counter catastrophic forgetting, a wide array of works consider a kind of
online learning named continual learning [26]. It aims to improve online learning
models to be more resistant to outliers, and to provide them with a better
stability of acquired knowledge.

As an example, let’s suppose we want to analyze user interactions on a busi-
ness website, to build a question answering (QA) system. This site undergoes
regular changes to catalogue items, their availability, prices, etc. Changes can
also occur in users’ interactions on the website. Every one of these changes must
be integrated into the QA process as quickly as possible, in order to always
produce relevant answers for the users. A continual learning approach trained
on a stream of interactions on the website would allow the model to acquire
new information while staying accurate for regular questions. Let’s then con-
sider that one key product undergoes a sale, preparing for the release of a new
version of the same product. The sale needs to be taken into account in the QA
system, but we also wish to notice when the sale ends, in order to "forget" its
effect on the system, i.e. to come back to the state of the model prior to the sale
integration.

In the literature, few works have considered solutions where a model could
need to come back to a previous state of knowledge. Continual learning as a
field consists of various methods to counter catastrophic forgetting, which can be
classified in two main categories derived from Biesialska et al. [6]: model-based
methods, that use dynamic adaptations over learning parameters [12,15,30]
or the model structure [16,19] to consolidate knowledge and avoid forgetting;
and memory-based methods [2,14,25,27] that use an external memory and a
rehearsal or replay mechanism to have the model remember previously learned
knowledge.
Model-based methods are mostly used in multi-task systems. In those systems,
returning back to a previous state doesn’t make sense, as the goal is to manage
an ever-increasing set of skills. On the other hand, memory-based methods, used
in this work, have a distinct advantage: using the rehearsal mechanism specific
to these methods and the notion of catastrophic forgetting, it is indeed possible
to have the model come back to a previous state.

Considering we induce forgetting through the aforementioned rehearsal, one
remaining issue is determining when to trigger that rehearsal mechanism; we
need to preserve the balance between stability and plasticity. For this reason, we
wish to be able to detect concept drift and to decide on a sequence of actions
based on some characteristic traits of that drift. To do so, a characterization of
the current context (i.e. the set of all concepts and the associated probabilities

of occurrence) available at all times is required. The decision process itself is
two-fold:

1. Detecting concept drift: determining whether the new input integrated to
the model creates a drift.

2. Determining the direction of the trend shift: a model under concept drift
could be either evolving towards a new model (leading to an update of the
sampled replay memory to memorize the older state of knowledge) or devolv-
ing towards an older state (leading to the use of the sampled replay memory
for induced forgetting over the previous registered changes).

In this paper, we propose a new measure of the concept drift, which is used
to determine the significance of the change in the data, and as such, to per-
form concept drift detection. Furthermore, this measure pave the way towards
characterization of the drift. The measure is based on the predictive errors by
the model. To measure this detection process, we use statistical measures (e.g.
distance between labels) that allow to notice a significant correlation between
forecast error and model shift. In order to validate the detection of concept drift,
an algorithm is proposed to compute this correlation.
The next step would be to explore the characterization potential. This would
then allow us to decide which approach to follow: classical continual learning if
the model is evolving or returning back if the model is devolving. We defer this
last step to a future work.

To validate our proposal, we use a proprietary dataset based on metadata
from online chats provided by a corporation. Our experiments show that using
the proposed algorithm, we compute correlation values that allow us to consider
a characterization of concept drift. In summary, the main contribution of this
paper is a correlation-based measure allowing both concept drift detection and
characterization decision.

The paper follows as described: in section 2, we establish a state of the art
for continual learning approaches, specifically on memory-based methods, and
for concept drift detection. In section 3, we propose an approach allowing con-
cept drift detection and the criteria to consider for concept drift characterization
using this approach. In section 4, we present our experimental results. Finally,
we conclude this paper with a summary of our work and some future consider-
ations.

2 Related work

The core idea of catastrophic forgetting is a loss of knowledge stability in a ma-
chine learning model due to integrating a degree of plasticity towards new inputs.
This phenomenon has long been an issue of concern [15,20], and a significant goal
for both incremental and continual learning is to counter it [21].

Continual learning encompasses a broad range of approaches [6], all aiming
to control catastrophic forgetting and to preserve the balance between stability
and plasticity. We have compiled a classification of these approaches.

Model-based methods

Various approaches deal with adaptation to concept drift by enacting structural
change of the machine learning model. Those model-based methods can be split
into two main categories:

1. Regularization methods use weight manipulation and forgetting factors to in-
fluence the learning process and preserve stability. As examples: Kirkpatrick
et al [15] propose an algorithm called Elastic Weight Consolidation (EWC)
operating on neural networks, singling out essential neurons for memoriza-
tion of specific knowledge and slowing the learning on those neurons. Gupta
et al., on their STAFF tool [12] propose a generally weaker forgetting thanks
to a stabilization coefficient. Finally, Yu and Webb [30] link their forgetting
factor’s value to the analysis of concept drift on the data stream over a period
of time.

2. Architectural methods consist of a set of dynamic adaptation processes on
the neuronal architecture (i.e. addition of layers or parameters) in order to
integrate new behaviors. Examples include the work of Li et al. [16], in which
a model learns to adapt weight values or to create new neurons in parallel
with the learning process; or Masana et al. [19], who store in an external
structure various masks and normalization parameters related to specific
tasks.

These methods are particularly suitable for multitask applications, but are oth-
erwise sub-optimal for repetitive tasks over long periods of time. They also don’t
include any flexibility over the plasticity mechanics: the applied transformations
to the model are not revertible by default.

Memory-based methods

Memory-based methods use incremental learning plasticity itself to prevent catas-
trophic forgetting. These methods set up a replay or rehearsal of various infor-
mations (learning data) in the model input, mixed with the input stream, to
create stability. There are multiple ways to proceed:

1. Rehearsal or replay methods, rely on maintaining a separate dataset of ex-
amples parallel to the learning process, that is re-integrated to the learning
process on a regular basis. Works to mention include iCarl from Rebuffi
et al. [25]. Their method, used for multi-class classification, relies on task-
specific examples dataset, updated with each new class. Aljundi et al. [2]
define a "Maximal Interference" criterion, applied post-learning over model

predictions, in order to identify data entries most susceptible to suffer from
catastrophic forgetting, and to use them as a replay dataset.

2. Pseudo-rehearsal methods don’t use an entry dataset, but store generaliza-
tions built from rehearsal data entries. Biesialska et al. mention two ex-
amples: DCR [27] and FearNet [14], using generative adversarial networks
(GAN) and autoencoders respectively, to make this generalization.

For all of these methods, knowledge stability is consolidated by a memory module
distinct from the model. This kind of approach is more suited to the notion of
bringing back a previous context, since rehearsal allows the recreate a previous
state of the model. The idea of reusing past concepts already exists in other
works related to multi-task learning, such as Wang et al.’s SDR architecture
[29]. SDR relies on checking for similarities in new data entries compared to
previously learned tasks, in order to determine if a new entry is an instance
of one of these tasks, or instead illustrates a new task to be integrated to the
model.

Some works on concept drift [1,11] define two categories of drift, depending
on the considered source of change:

– Virtual concept drift is a measurable change on distribution of the values of
specific data fields;

– Real concept drift is a change in the relation between features and labels.

Sometimes a third kind of drift is considered: label or prior-probability shift,
related to a change in the distribution of the prediction labels.

There are various existing tests to detect concept drift based on model perfor-
mance. A number of them are mentioned in the Bayram et al. review of concept
drift methods [5]:

– A first set of detectors called "Statistical Process Control" detectors, watch
the evolution of the error rate of the learner as an indicator of concept drift.
Drift Detection Method (DDM) [10] tracks the rate of prediction errors over
the data stream, compared to specific thresholds for warning (announcing
a potential drift) and drift itself, following the hypothesis that a rising rate
means a drift is either coming or happening. Early Drift Detection Method
(EDDM) EDDM [4] uses the same principle, but looks at the distance be-
tween consecutive errors rather than their rate, which improves detection in
gradual drift.

– Another set of detectors compare statistical measures over sliding windows
to detect change. Those include ADWIN (short for Adaptive Windows) [7],
that tracks the change in the distribution of a variable in two sliding windows
of varying sizes, dynamically adapting the size to optimize the detection.

Raab et al. propose another detector called KSWIN [23] (KS being short
for Kolmogorov-Smirnov), using the Kolmogorov-Smirnov test [18] over two
sliding windows to check for concept drift.

The base measure we propose in this article has elements from both cate-
gories. It is error-based, as it relies on prediction error for new data inputs —
although we’re not specifically interested in the rate of those errors, but rather on
their amplitude. Furthermore, the drift detection decision is based on aggregates
of those errors in sliding windows.

Our general approach differs from previously mentioned works by the atten-
tion given to the chronology of consecutive concepts, which requires an accurate
characterization of those concepts and even more so, of the concept drift. We
not only want to detect concept drift, but also to be able measure its amplitude
and direction — in the sense of whether the drift is towards a new concept, or a
previously occurring one. This measure must come before the learning step (like
in Wang et al.’s SDR), in order to use it in further work for decision over the
kind of rehearsal to enact.

In summary, we propose a new measure for concept drift detection and char-
acterization in new learning data inputs, based on prediction error, and available
before the learning step.

3 Proposal

Our process involves analyzing data from a single data stream: we first aim to
detect a variation in this stream regarding the relation between a vector their
corresponding labels, and for a second step, we will consider if characterization
of this relation is possible. The variation of the relation between vector and label
is measurable through the variation of the predictions performed by a learning
model over a test dataset of labeled vectors.

In this paper, let’s consider that a continual learning model M is set up over
two distinct data streams: Spredict, made of data vectors X for which we want
to make a forecast; and Slearn, made of labeled vectors (X, y) to be integrated
to the model through learning.
In the example from section 1, the prediction stream Spredict is made on ques-
tions asked by the users while browsing on the website. The learning stream
Slearn contains questions with relevant answers given by an outside source —
for example a human expert. The model then learns on the questions/answers
couples from Spredict so that it may improve answers given for the questions in
Slearn.

Our goal here is to confirm the existence of a correlation between the changes
induced on the model by the learning of data entries from Slearn, and the predic-
tion error measured on those same data entries before learning them. When this

is confirmed, a significant change in the model — i.e. a concept drift — might
be anticipated using the prediction made by the model itself. We describe in the
following segments some tools and a method aiming to measure this correlation
between predictions and model change.

3.1 General notations

To represent the learning stream over which our proposal operates, we consider
a discrete time period T ⊆ N. The labeled vectors of data (Xt, yt) of this stream
are indexed by time periods t ∈ T . It is then necessary to explicitly define the
essential operations of our continual learning model M :

The operation of learning a labeled vector (X, y) to update a model M into
a new model M ′ has the following notation:

M ′ = learn(M,X, y) (1)

The operation of predicting a label ŷ for a vector X, with a trust value p ∈ [0, 1]
associated to the prediction, has the following notation:

(ŷ, p) = predict(M,X) (2)

To give a formal notation for the prediction error on a measure, we need a
comparison criterion — a distance measure between predicted and actual labels.
The distance between two labels y, y′ is noted as follows:

d = dist(y, y′) = ∥y − y′∥ ∈ R (3)

The meaning of the calculation for a norm ∥y − y′∥ varies depending of the use
case, since it represents a relation between each pair of labels. If those labels are
already represented by numerical values in R, we can simply use |y − y′|. In our
example, the distance between two answers may simply be a binary value (good
or bad answer), with the following:

dist(y, y′) =

{
0 if y = y′

1 otherwise (4)

If more than a pair of categories of answers are considered, the notion of gap
can become more complex, and as such, may justify to use label values from R,
or even vectors with values in R.

The formalism for time series is required to invoke the measures computed
in our algorithm. Time series are sequences of values with a time index. They
are useful to study the interdependency of these values through time. Cross
correlation is a measure of this dependency; it compares two series shifted by
a lag τ [9,22]. The cross correlation between variables A and B on a discrete

period of time T (with values in C) is a function of τ defined as:

(B ⋆ A)(τ) =
∑
t∈T

A(t+ τ)B(t) (5)

where B(t) is the complex conjugate of B(t) : ∀z ∈ C, z = a+ ib =⇒ z = a− ib.
We finally define a specific notation for the cross correlation measured at τ = 0
(a significant value for our proposal, considering the relation we want to measure
would happen without lag): corr (A,B) = (B ⋆ A)(0).

3.2 Algorithm

The proposed algorithm aims to determine the relation between the model pre-
diction over a given data vector, and the evolution of the model induced by the
integrated labeled vector. This algorithm 1 applied to a model M , operates on
a stream of labeled vectors (Xt, yt)t∈T .

For each time period t of T , we retrieve the corresponding labeled vector
(Xt, yt), and first measure the prediction error over this vector (lines 3 and 4
of the algorithm). This error is defined as the distance between the prediction
2 and the true label. This error is weighted by the trust value given to the
prediction, also obtained through the prediction operation. The error function
for predictions from current model Mt is:

err(X, y, t) = p · dist(y, ŷ) where (ŷ, p) = predict(Mt, X) (6)

This error value is then used in a computation over error values from previ-
ous data entries (in a sliding window). We call Err(S,W) the linear combi-
nation of the error values in the sliding window S = (et)t∈[0;n], weighted by
W = (wt)t∈[0;n] such that:

Err(S,W) =
∑

w∈W,e∈S

w · e (7)

The linear combination value is saved in an array D̂. Next step (line 6) is Mt

learning the labeled vector, and following equation 1, returning a new model
Mt+1 = learn(Mt, Xt, yt). Both models Mt and Mt+1 are compared to measure
the model shift induced by learning the new entry.
To compare the models, we can use equation 6 to make a variation function,
defined for a pair of models M = Mt and M ′ = Mt+k, and for a test dataset
⟨X , Y ⟩ = (X ′

i, y
′
i)i∈[1,N], as:

∆M ′

M (X , Y) =

N∑
i=1

(
err(Xi, yi, t+ k)− err(Xi, yi, t)

)
(8)

The variation value ∆M ′

M (X , Y) is stored in an array D.

When the last value of T is reached (end of the stream), cross correlation
values are computed for any value of lag τ ∈ [−N . . .N]. The remaining lines of
the algorithm (from line 9 to the end) correspond to the correlation checking.
We consider the value corr(D̂,D), i.e. the cross correlation value for lag 0 (cf
equation 5) for values in arrays D̂ and D (line 9). If the value of corr(D̂,D)

measured through the algorithm is not 0, values stored in D̂ can be used —
to a certain extent — to predict shift in value of D. This would account for
the measure’s ability to detect change, but would not immediately solve the
characterization issue, which will require further work.

Algorithm 1: Concept drift estimation and computation of correlation
coefficients
Inputs : time period T ⊆ N, classification model M , test dataset

⟨X , Y ⟩
Data : labeled vectors (Xt, yt)t∈T

Output : correlation coefficient C

1 initialization of D̂[] and D[]

2 For all t ∈ T do
3 X, y ← Xt, yt
4 S ← S.update

(
err(X, y, t)

)
/* measure of prediction error */

5 D̂[t]← Err(t, S,W) /* computation with values from S */
6 M ′ ← learn(M,X, y)

7 D[t]← ∆M ′

M (X , Y) /* measure of model shift over (X, y) */
8 M ←M ′

9 C ← corr
(
D̂,D

)
/* cross correlation with lag τ = 0 */

10 If C ̸= 0 then
11 return C /* correlation is identified */

/* (possible characterization) */

12 else
13 return ⊥ /* no correlation revealed */

4 Evaluation

4.1 Protocol

To evaluate our proposal, we use a dataset from a proprietary source. The dataset
is made of various metadata collected over a volume of real online conversations
provided by a corporation, each associated through the result of the conversation,
to a positive or negative label. Five categories of metadata are considered for
just over 10,000 conversations, with all or a subset of these categories being used

at once. Online learning classification is implemented using the River library3;
the model used is Hoeffding tree classifiers ([8,13]), as implemented in the same
library. The classification model is used with default parameters.

Through our experiments, we first want to check if the prediction error mea-
sure can be used for model shift detection. To show this, we apply our algorithm
1 on a simulated stream of data, for the full set of features available, and mea-
sure the cross correlation around lag 0. Streaming simulation is also performed
through the River library.

In order to qualify the relevancy of our prediction measure errM as a concept
drift detection tool, we apply our algorithm 1 over the KSWIN test [23] in parallel
to the measure, with the same window size for both. KSWIN can only detect
concept drift over a single feature stream at once. To compensate for that fact, we
use an aggregate (specifically a logical disjunction or OR operation) of detection
values from all possible streams: one for each feature, and one for the label.
Cross correlation is also measured between this aggregate and the model shift.
We first perform the experiment on a window of size 100, which is the default
size for KSWIN. We then perform multiple runs with various window sizes to
find an optimal size for cross correlation for our dataset.

We then consider the issue of characterization of the measured model shift.
In order to use an already established detection measure as a characterization
criterion, one way could be to look for a function mapping from the measure
to the actual model shift. To evaluate this possibility, we compute the ratio
between both values of the prediction measure and the model shift and look for
an identifiable trend between the two quantities.

3 https://riverml.xyz/0.14.0/

https://riverml.xyz/0.14.0/

4.2 Results

Fig. 1. Computed real concept drift (in red) against detected shift using the error-
based measure, with a window size of 100 (in blue)

Concept drift detection During the first experiment, we measured values
for the measure, identified the vectors for which KSWIN was detecting a model
shift, and generated two figures: figure 1 shows compared values of concept drift
computed on the model, and of the normalized measure, over time; figure 2
shows cross correlation curves for the measure and KSWIN, both in relation to
concept drift.

Even though figure 1 presents a very noisy curve for the measure, figure
2 reveals that cross correlation for our method offers a similar curve shape to
KSWIN’s. Furthermore, when looking at the cross correlation values at lag 0 and
under (i.e. when past values of the criteria align with future values of concept
drift, giving a forecast of sorts), our method outperforms KSWIN.

By comparing the measure and KSWIN, we can say that the former seems
efficient as a concept drift detection mechanism, or even as a concept drift pre-
dictor. However, the aggregate of KSWIN detection values we compared the
measure to isn’t a real concept drift detector, but merely an improved virtual
drift detector, and the performance seen here is relative to various experiment
criteria, among which the aggregation method itself.

Fig. 2. Cross-correlation with computed model concept drift from the error-based mea-
sure errM (in blue) and the KSWIN aggregate (in orange)

Setting the measure parameters We started with a low grain setting, in
order to select a range of window sizes optimizing correlation at lag 0, shown
in figure 3a. This first setting shows that lower window sizes give better cross
correlation values. We then restrict our setting to a finer grain, low sizes range
(figure 3b). Again, the lower sizes, specifically between 1 and 4 (2 being an
outlier, probably due to the weight computation method) perform better on
cross correlation.
Comparing various window sizes allows us to conclude that a window of size 1 is
the optimal choice for both this data source and this weighting of the window.
This conclusion is not an absolute, and both the data and the weighting approach
influence the optimal outcome.

Characterization A detection criterion can be used as a characterization of
concept drift criterion if there is a function mapping criterion values to the am-
plitude of the concept drift. In order to check for that potential characterization,
we measured various ratios between the measure values and computed drift. The
following measures are made with a window of size 1, following the conclusion
from subsection 4.2. We consider various subsets of features {A,B,C,D} to gen-
erate figures 4 (features A, B and C), 5a (features A and B) and 5b (features
B, C and D).

In the resulting figures, we can see that multiple trends appear in various
intervals of the data stream, since in those intervals, the ratio follows linear tra-
jectories. This can be seen in figures 5a (with one such interval visible between
time indices 0 and 3000, and another, sparser one with a steeper slope, between

(a) (b)

Fig. 3. Cross-correlation values (Y-axis) at lag 0, depending on the window size (X-axis
and indices of points): (a) in low grain on a logarithmic scale; (b) in finer grain, from
1 to 10.

3000 and 9000) and 5b (two noticeable intervals respectively between 0 and 5000,
and between before 5000 and after 7000). Looking back at model shift values on
figure 1, we notice that those trends happen over intervals of low model shift,
or between high model shift periods. We also note that those trends don’t nec-
essarily happen in succession to each other, but can overlap (e.g. between 3000
and 5000 on figure 4).
Even though none of these trends can describe a single, constant relation between
the measure and real concept drift, they each take part in a set of relations be-
tween both of them. The aforementioned overlap between trends suggest that
this variety of relations is not only due to model shift, but also (and most impor-
tantly) to specific values taken by some of the features in those intervals.

Mutiple remarks can be made about characterization. The experiments we
performed here show that the measure highlights a number of trends during the
learning process, seemingly related to the values taken by specific features. This
allows us to hypothesize that a more particular analysis of these feature values,
further developed in the conclusion of this article, would allow an even more
thorough characterization than expected, even for other works.

5 Conclusion

In this paper, we proposed a concept drift detection and characterization measure
related to a continual learning model. Our measure uses model prediction to
determine if and to what degree a new data entry creates a concept drift. Our
experiments show that real concept drift detection is possible using the measure,
and that various parameters allow an adaptation to multiple kinds of data or
models.

The experiments also show a set of distinct trends that can be observed in the
relation between the measure and real drift, thus opening new perspectives for

Fig. 4. Ratio of error-based measure over concept drift for a subset of features
{A,B,C}

(a) (b)

Fig. 5. Ratio of error-based measure over concept drift for subsets of features: (a)
{A,B} and (b) {B,C,D}

characterization. No simple aggregate of those trends can be used as a general
characterization of concept drift; however, those trends and their overlapping
suggest that this behavior is related directly to distinct trends in the learning
features themselves.

As a future work, explainability approaches, as studied in the Explainable
AI (XAI) field of research [3,28], could be combined to our measure to produce a
more accurate characterization. Furthermore, if we were to store the parameters
related to each trend as representations of the state of the model, this would be
a step towards building a continual learning system sensitive to concept tem-
porality and recurrence. We could also take into account real use conditions of
continual learning in terms of memory resource capacity and computation time.
Finally, although the experiments were already lead on a real dataset, we project

to experiment over a real datastream instead of experimenting with a simulated
stream.

References

1. Agrahari, S., Singh, A.K.: Concept Drift Detection in Data Stream Mining : A
literature review. Journal of King Saud University - Computer and Information
Sciences (Dec 2021). https://doi.org/10.1016/j.jksuci.2021.11.006

2. Aljundi, R., Caccia, L., Belilovsky, E., Caccia, M., Lin, M., Charlin, L.,
Tuytelaars, T.: Online Continual Learning with Maximally Interfered Retrieval.
arXiv:1908.04742 [cs, stat] (Oct 2019)

3. Arrieta, A.B., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado,
A., García, S., Gil-López, S., Molina, D., Benjamins, R., Chatila, R., Herrera,
F.: Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities
and Challenges toward Responsible AI (Dec 2019)

4. Baena-Garcıa, M., Gavalda, R., Morales-Bueno, R.: Early Drift Detection Method.
Fourth international workshop on knowledge discovery from data streams 6, 77–86
(Sep 2006)

5. Bayram, F., Ahmed, B.S., Kassler, A.: From Concept Drift to Model Degradation:
An Overview on Performance-Aware Drift Detectors (Mar 2022). https://doi.
org/10.48550/arXiv.2203.11070

6. Biesialska, M., Biesialska, K., Costa-jussà, M.R.: Continual Lifelong Learning
in Natural Language Processing: A Survey. Proceedings of the 28th Interna-
tional Conference on Computational Linguistics pp. 6523–6541 (2020). https:
//doi.org/10.18653/v1/2020.coling-main.574

7. Bifet, A., Gavaldà, R.: Learning from Time-Changing Data with Adaptive Window-
ing. In: Proceedings of the 2007 SIAM International Conference on Data Mining
(SDM), pp. 443–448. Proceedings, Society for Industrial and Applied Mathematics
(Apr 2007). https://doi.org/10.1137/1.9781611972771.42

8. Bifet, A., Holmes, G., Pfahringer, B., Kranen, P., Kremer, H., Jansen, T., Seidl,
T.: MOA: Massive Online Analysis, a Framework for Stream Classification and
Clustering. Proceedings of the first workshop on applications of pattern analysis
pp. 44–50 (Sep 2010)

9. Bracewell, R.: Pentagram notation for cross correlation. the fourier transform and
its applications. New York: McGraw-Hill 46, 243 (1965)

10. Gama, J., Medas, P., Castillo, G., Rodrigues, P.: Learning with Drift Detection.
In: Bazzan, A.L.C., Labidi, S. (eds.) Advances in Artificial Intelligence – SBIA
2004. pp. 286–295. Lecture Notes in Computer Science, Springer, Berlin, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-28645-5_29

11. Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on
concept drift adaptation. ACM Computing Surveys 46(4), 44:1–44:37 (Mar 2014).
https://doi.org/10.1145/2523813

12. Gupta, U., Babu, M., Ayoub, R., Kishinevsky, M., Paterna, F., Ogras, U.Y.:
STAFF: Online learning with stabilized adaptive forgetting factor and feature se-
lection algorithm. In: Proceedings of the 55th Annual Design Automation Confer-
ence. pp. 1–6. ACM, San Francisco California (Jun 2018). https://doi.org/10.
1145/3195970.3196122

13. Hulten, G., Spencer, L., Domingos, P.: Mining time-changing data streams. In:
Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge

https://doi.org/10.1016/j.jksuci.2021.11.006
https://doi.org/10.1016/j.jksuci.2021.11.006
https://doi.org/10.48550/arXiv.2203.11070
https://doi.org/10.48550/arXiv.2203.11070
https://doi.org/10.48550/arXiv.2203.11070
https://doi.org/10.48550/arXiv.2203.11070
https://doi.org/10.18653/v1/2020.coling-main.574
https://doi.org/10.18653/v1/2020.coling-main.574
https://doi.org/10.18653/v1/2020.coling-main.574
https://doi.org/10.18653/v1/2020.coling-main.574
https://doi.org/10.1137/1.9781611972771.42
https://doi.org/10.1137/1.9781611972771.42
https://doi.org/10.1007/978-3-540-28645-5_29
https://doi.org/10.1007/978-3-540-28645-5_29
https://doi.org/10.1145/2523813
https://doi.org/10.1145/2523813
https://doi.org/10.1145/3195970.3196122
https://doi.org/10.1145/3195970.3196122
https://doi.org/10.1145/3195970.3196122
https://doi.org/10.1145/3195970.3196122

Discovery and Data Mining. pp. 97–106. ACM, San Francisco California (Aug
2001). https://doi.org/10.1145/502512.502529

14. Kemker, R., Kanan, C.: FearNet: Brain-Inspired Model for Incremental Learning.
In: International Conference on Learning Representations (Feb 2022)

15. Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu,
A.A., Milan, K., Quan, J., Ramalho, T., Grabska-Barwinska, A., Hassabis, D.,
Clopath, C., Kumaran, D., Hadsell, R.: Overcoming catastrophic forgetting in neu-
ral networks. Proceedings of the National Academy of Sciences 114(13), 3521–3526
(Mar 2017). https://doi.org/10.1073/pnas.1611835114

16. Li, X., Zhou, Y., Wu, T., Socher, R., Xiong, C.: Learn to Grow: A Continual Struc-
ture Learning Framework for Overcoming Catastrophic Forgetting. International
Conference in Machine Learning p. 10 (2019)

17. Lin, J.: The lambda and the kappa. IEEE Internet Computing 21(5), 60–66 (2017)
18. Lopes, R.H.C.: Kolmogorov-Smirnov Test. In: Lovric, M. (ed.) International En-

cyclopedia of Statistical Science, pp. 718–720. Springer, Berlin, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-04898-2_326

19. Masana, M., Tuytelaars, T., van de Weijer, J.: Ternary Feature Masks: Zero-
forgetting for task-incremental learning. arXiv:2001.08714 [cs] (Apr 2021)

20. McCloskey, M., Cohen, N.J.: Catastrophic Interference in Connectionist Networks:
The Sequential Learning Problem. In: Psychology of Learning and Motivation,
vol. 24, pp. 109–165. Elsevier (1989). https://doi.org/10.1016/S0079-7421(08)
60536-8

21. Nguyen, C.V., Achille, A., Lam, M., Hassner, T., Mahadevan, V., Soatto,
S.: Toward Understanding Catastrophic Forgetting in Continual Learning.
arXiv:1908.01091 [cs, stat] (Aug 2019)

22. Papoulis, A.: The fourier integral and its applications. Polytechnic Institute of
Brooklyn, McCraw-Hill Book Company Inc., USA, ISBN: 67-048447-3 (1962)

23. Raab, C., Heusinger, M., Schleif, F.M.: Reactive Soft Prototype Computing for
Concept Drift Streams. Neurocomputing 416, 340–351 (Nov 2020). https://doi.
org/10.1016/j.neucom.2019.11.111

24. Ramasesh, V.V., Dyer, E., Raghu, M.: Anatomy of Catastrophic Forgetting: Hid-
den Representations and Task Semantics. arXiv:2007.07400 [cs, stat] (Jul 2020)

25. Rebuffi, S.A., Kolesnikov, A., Sperl, G., Lampert, C.H.: iCaRL: Incremental Clas-
sifier and Representation Learning. In: 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). pp. 5533–5542. IEEE, Honolulu, HI (Jul 2017).
https://doi.org/10.1109/CVPR.2017.587

26. Ring, M.B.: Continual Learning in Reinforcement Environments. GMD-Bericht
(1994)

27. Shin, H., Lee, J.K., Kim, J., Kim, J.: Continual Learning with Deep Generative
Replay. arXiv:1705.08690 [cs] (Dec 2017)

28. Tjoa, E., Guan, C.: A Survey on Explainable Artificial Intelligence (XAI): To-
ward Medical XAI. IEEE Transactions on Neural Networks and Learning Systems
32(11), 4793–4813 (Nov 2021). https://doi.org/10.1109/TNNLS.2020.3027314

29. Wang, S., Choi, Y., Chen, J., El-Khamy, M., Henao, R.: Toward Sustainable Con-
tinual Learning: Detection and Knowledge Repurposing of Similar Tasks (Oct 2022)

30. Yu, H., Webb, G.I.: Adaptive online extreme learning machine by regulating for-
getting factor by concept drift map. Neurocomputing 343, 141–153 (May 2019).
https://doi.org/10.1016/j.neucom.2018.11.098

https://doi.org/10.1145/502512.502529
https://doi.org/10.1145/502512.502529
https://doi.org/10.1073/pnas.1611835114
https://doi.org/10.1073/pnas.1611835114
https://doi.org/10.1007/978-3-642-04898-2_326
https://doi.org/10.1007/978-3-642-04898-2_326
https://doi.org/10.1016/S0079-7421(08)60536-8
https://doi.org/10.1016/S0079-7421(08)60536-8
https://doi.org/10.1016/S0079-7421(08)60536-8
https://doi.org/10.1016/S0079-7421(08)60536-8
https://doi.org/10.1016/j.neucom.2019.11.111
https://doi.org/10.1016/j.neucom.2019.11.111
https://doi.org/10.1016/j.neucom.2019.11.111
https://doi.org/10.1016/j.neucom.2019.11.111
https://doi.org/10.1109/CVPR.2017.587
https://doi.org/10.1109/CVPR.2017.587
https://doi.org/10.1109/TNNLS.2020.3027314
https://doi.org/10.1109/TNNLS.2020.3027314
https://doi.org/10.1016/j.neucom.2018.11.098
https://doi.org/10.1016/j.neucom.2018.11.098

	An Error-Based Measure for Concept Drift Detection and Characterization

