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a b s t r a c t

Meeting tenant performance requirements through data replication while ensuring an economic profit

is very challenging for cloud providers. For this purpose, we propose a data Replication Strategy that

satisfies Performance tenant objective and provider profit in Cloud data centers (RSPC). Before the exe-

cution of each tenant query Q, data replication is considered only if: (i) the estimated Response Time of

Q (RTQ) exceeds a critical RT threshold (per-query replication), or (ii) more often, if RTQ exceeds another

(lower) RT threshold for a given number of times (replication per set of queries). Then, a new replica

is really created only if a suitable replica placement is heuristically found so that the RT requirement

is satisfied again while ensuring an economic profit for the provider. Both the provider’s revenues and

expenditures are also estimated while penalties and replication costs are taken into account. Further-

more, the replica factor is dynamically adjusted in order to reduce the resource consumption. Compared

to four other strategies, RSPC best satisfies the RT requirement under high loads, complex queries and

strict RT thresholds. Moreover, penalty and data transfer costs are significantly reduced, which impacts

the provider profit.

© 2019 Elsevier Inc. All rights reserved.
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. Introduction

.1. Motivation

Data replication is a well known technique that consists in stor-

ng multiple copies of data, called replicas, at multiple nodes. It

ims to increase data availability, reduce bandwidth consumption

nd achieve fault-tolerance. Data replication has been commonly

sed in traditional systems such as P2P (Spaho et al., 2015) and

ata grid systems (Tos et al., 2015). In such systems, a replica-

ion strategy needs to determine what to replicate? When to cre-

te/remove replicas? Where to place them? and How many replicas

o create? (Ranganathan and Foster, 2001). However, most of the

roposed replication strategies in the above systems are difficult

o adapt to clouds since they aim to obtain better system perfor-

ance without taking into account the economic cost of replica-

ion. In fact, creating as many replicas as possible in cloud systems

annot be economically feasible since it can result in wasteful re-

ource utilization and reduced provider profit. Hence, data repli-

ation strategies in cloud systems should also achieve goals such

s:
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i) Providing a reliable Quality of Service (QoS) by satisfying a Ser-

vice Level Agreement (SLA), a legal contract between a cloud

provider and its tenants, i.e., customers (Buyya et al., 2009).

Mainly, an SLA contains one or several tenant Service Level Ob-

jectives (SLO), i.e., requirements, to be satisfied by the provider.

ii) A dynamic adjustment of resources that the provider rents to

its tenants, according to the ‘pay as you go’ pricing model

(Armbrust et al., 2010).

Performance guarantees, e.g., response time (RT), are often not

ffered by cloud providers as a part of the SLA because of the het-

rogeneous workloads in cloud systems, e.g., Google Cloud SQL1

nly provides downtime and error guarantees without an RT guar-

ntee. Thus, satisfying performance can often conflict with the

oal of obtaining a maximum economic benefit at minimal oper-

ting costs (Lang et al., 2014). However, data replication strategies

n such systems should consider the ‘tenant performance/provider

rofitability’ trade-off, especially when they are proposed for OLAP

Online Analytical Processing) applications as we do here. In other

erms, the consistency management is not the focus of this work.

Most of the proposed replication strategies in the literature

ocus on ensuring a specific tenant objective, e.g., availability
1 https://cloud.google.com/sql/docs/.

https://doi.org/10.1016/j.jss.2019.110447
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(Wei et al., 2010), reliability (Li et al., 2017), low latency (Ma and

Yang, 2017), data durability (Liu et al., 2018), security (Ali et al.,

2018) and energy efficiency (Boru et al., 2015) when other strate-

gies balance among different objectives, e.g., availability and load

balancing (Long et al., 2014). On the other hand, there are a num-

ber of strategies (Liu et al., 2018; Bonvin et al., 2011; Xiong et al.,

2011; Mansouri et al., 2017; Edwin et al., 2017; Mansouri and Ja-

vidi, 2018) and replication frameworks (Pu et al., 2015) that aim

to satisfy the tenant’s objectives while reducing the cost of repli-

cation, e. g., data storage and/or data transfer costs, between Data

Centers (DCs). Some of them (Gill and Singh, 2016; Lin et al., 2013)

are mentioned cost-aware although the considered cost of replica-

tion is not necessarily an economic cost. It is regarded as an as-

signed budget value for DCs in Gill and Singh (2016) and mod-

elled in terms of time in Lin et al. (2013). In this context, only

some strategies (Wu et al., 2013; Zeng et al., 2016; Tos et al., 2017;

Casas et al., 2017; Liu and Shen, 2017; Mansouri and Buyya, 2019)

model the replication cost and the provider profit as monetary

costs while satisfying a tenant RT SLO. Furthermore, they often

only consider a per-query replication that immediately responds to

any query load or popularity change, but may generate higher RTs

and increase overhead costs.

1.2. Proposal

We propose a data Replication Strategy that satisfies both Per-

formance and minimum availability tenant objectives while en-

suring an economic profit for the provider in Cloud data centers

(RSPC). We consider a set of Virtual Machines (VMs) scattered over

heterogeneous DCs, themselves distributed over different regions.

Each VM has its own allocated storage volume and computational

resources. Throughout this paper, a node refers to a VM.

Ensuring a given minimum availability SLO (SLOAV) consists in

initially creating, across regions, a minimum number of replicas for

each data set, e.g., a database (DB) relation or an HDFS data block

(Cheng et al., 2012), then maintaining them (Wei et al., 2010).

Dealing with the performance guarantee, we focus on the RT met-

ric. In this context, most of data replication strategies in the lit-

erature, e.g., (Mansouri et al., 2017), are based on data locality in

order to reduce data access time, i.e., a replica is deployed at the

user’s node or at the node very near to it (Ranganathan and Fos-

ter, 2001). In order to reduce the bandwidth consumption, RSPC

benefits from the Network Bandwidth (NB) locality (Park et al.,

2004), i.e., a replica of a required remote data dr is placed at a

node having a larger NB toward the node requiring dr.

Before the execution of each tenant query Q requiring dis-

tributed data over a set of nodes within a region, the RT of Q (RTQ)

is estimated in order to check whether the RT objective (SLORT) is

satisfied or not. The RSPC replica management deals with the fol-

lowing issues:

A. A new replica is created only if: (a) SLORT is not satisfied.

Then, (b) the provider must have an economic profit when a

replica placement node that satisfies SLORT is found.

a. SLORT is not satisfied when RTQ exceeds a given criti-

cal RT threshold (RT_SLO_PQ), i.e., replication per- query,

or (more often) when RTQ exceeds another (lower) RT

threshold (RT_SLO_PSQ) for a given number of times, i.e.,

replication per set of queries. Hence, the creation of a

new replica is avoided whenever RTQ exceeds a non-

critical threshold. The RTQ estimation is based on a pro-

posed cost model that takes into account the parallel ex-

ecution of DB queries. It considers several factors, e.g.,

NB, query complexity, user’s access patterns and query

arrival rate that impact query performance while concur-

rent queries are processed.
b. In order to check whether the replication is profitable for

the provider, its revenues and expenditures are also esti-

mated before the execution of Q in a multi-tenant con-

text. Within the proposed economic cost model, penalties

resulting from an SLA breach are also factored as well as

the replication cost. A penalty management algorithm is

also proposed to reduce these penalties.

B. A replica placement heuristic is also proposed. It aims to

find, within a reduced search space, a suitable placement

NodeP for receiving a new replica in order to satisfy SLORT

again, i.e., RTQ < RT_SLO_PSQ, in a profitable way. In or-

der to determine what and where to replicate, the proposed

heuristic starts by identifying the resource bottleneck that

causes the SLORT unsatisfaction:

a. Q or Qp ⊆ Q could require a remote dr through a low NB,

which generates a data transfer bottleneck. Hence, NodeP

should have a better NB to the node requiring dr, or,

b. An overloaded node (requiring a local data dl) could ex-

ecute Q/Qp that could not satisfy SLORT. Hence, Q/Qp

should be executed on a less loaded NodeP that also re-

ceives a replica of dl.

C. A dynamic adjustment of the replica factor, i.e., number of

replicas, is also considered. Adding a new replica occurs

in order to satisfy SLORT, which avoids penalties. On the

other hand, unnecessary replicas are compressed and sub-

sequently removed when SLORT is satisfied over time or ac-

cording to the changes in the user’s access patterns. This

reduces the consumption of resources, which increases the

provider’s profits.

For evaluation purposes, we based on TPC-H queries and com-

ared RSPC to four other strategies with regard to several metrics,

ncluding the average RT and the average replica factor for both

niform and skewed data distributions, the impact of the num-

er of VMs, the query arrival rate and the query complexity on

erformance, the number of SLA violations and resource expendi-

ures of the provider. RSPC not only provides acceptable RTs that

atisfy SLORT but, takes into account the provider economic profit,

specially under high workloads, strict RT thresholds and complex

ueries. It responds better to changes in the user’s access patterns.

eplication overhead costs are also reduced since most of replica-

ions are performed per set of queries. Moreover, RSPC generates

ewer expenses, e.g., penalties and data transfer costs.

Overall, the contributions of this paper are: (i) we propose a

eplica creation per query or (more often) per set of queries in or-

er to simultaneously satisfy SLOAV and SLORT in a profitable way,

ii) the NB hierarchy based heuristic aims to quickly find an ac-

eptable replica placement, (iii) the replica factor is dynamically

djusted, and (iv) the replication cost as well as penalties are fac-

ored into the proposed economic cost model. The rest of this pa-

er is organized as follows: Section 2 gives some cloud charac-

eristics and the considered architecture. Section 3 presents the

SPC replica management (replica creation, replica placement and

eplica factor adjustment). Section 4 deals with a query RT esti-

ation. Section 5 describes the proposed economic cost model.

ection 6 shows the experimental results. Section 7 analyzes the

elated work. Finally, Section 8 concludes the paper and gives some

uture work.

. Background and architecture overview

.1. General context

Several tenants may simultaneously place their queries in the

loud. Thus, adopting a virtualization technology, through the cre-

tion of VMs on a physical machine, reduces the amount of re-
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Fig. 1. An example of a distributed data center architecture.
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Fig. 2. An example of a data center DCij.
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ources required to execute each tenant query. In this context, scal-

ng out, that we consider in this paper through data replication, re-

ults in less provisioning of resources than scaling up, i.e., adding

esources within a physical machine (Hwang et al., 2016). Hence,

n elastic resource management is critical to minimize operating

ost while ensuring tenant SLOs, e.g., SLORT. These resources, e.g.,

eplicas, are allocated so that a provider and its tenants agree

n an SLA (Hameurlain and Mokadem, 2017), e.g., RT of tenant’s

ueries should be less than a threshold defined in the SLA. Mainly,

n SLA includes: (a) one or several SLOs, (b) a validity period, (c) a

illing period (BP) during which the provider rents services to its

enants, (d) an agreed monetary amount paid by the tenant to the

rovider for the processing of its queries during a BP, and (e) an

greed monetary penalty amount paid by the provider to its ten-

nt in case of breach of the SLA (Da Silva et al., 2012).

.2. Architecture overview

Some companies consider the transferring of all data to a single

C/cluster when executing a tenant query. This generates a sig-

ificant data transfer. Given that users as well as data are scat-

ered across the globe, cloud systems should be deployed across

ultiple DCs covering large geographical areas.2,3 Some recent

olutions, e.g., (Cooper et al., 2008; Ardekani and Terry, 2014;

os et al., 2016), model a two level hierarchy, i.e., a region is com-

osed of a single DC, while optimizing the cross-region data trans-

er consumption. However, links between DCs are heterogeneous

Gupta et al., 2014). Then, a NB hierarchical model is more real-

stic. In this paper, we consider within a region, several DCs that

ommunicate through an intermediate NB. This leads to a system

opology with three levels: regions, DCs and nodes that host data.

Let RG = {RG1,…, RGi,…, RGq} with (1 ≤ i ≤ q) be a set of q geo-

raphical regions connected via the Internet without a direct link

etween them (Fig. 1). Thus, the NB capacity between geographical

egions is not abundant and expensive. Each region contains het-

rogeneous DCs. We use DC = {DCi1,…, DCij,…, DCin} with (1 ≤ j ≤ n)

o denote a set of n DCs within a region RGi. The NB between

hese DCs is more abundant and cheaper compared to the first

evel. Finally, within each DCij, we use N = {Nij1,…, Nijk,…, Nijm}

ith (1 ≤ k ≤ m) to denote a set of m heterogeneous nodes, i.e., VMs

Fig. 2). They are connected by a high NB that is even cheaper than

he NB between DCs within a region.

As a real scenario, we consider a cloud system composed of dis-

ributed DCs over three countries (RG1, RG2 and RG3) as shown in

ig. 1. DCs within RGi are located in different cities. Then, each DCij
2 Microsoft DCs. http://www.microsoft.com/en-us/server-cloud/cloud-os/

lobal-datacenters.aspx.
3 Google DC Locations. http://www.google.com/about/datacenters/inside/

ocations/.

r

3

t

ontains a number of VMs with a storage disk volume and com-

utational resources for each VMijk, i.e., Nijk. This corresponds to

shared-nothing architecture (Ozsu and Valduriez, 2011). When a

enant query is received in RGi, the manager of RGi coordinates its

xecution across nodes ∈ RGi and keeps track of important infor-

ation such as the number of replicas and their locations. Then, a

eplica manager within each DC is responsible for creating/deleting

eplicas. It updates the RGi manager whenever a replica is cre-

ted/deleted.

. The proposed replication strategy

The proposed RSPC strategy aims to satisfy tenant’s SLOAV and

LORT in a profitable way. Below, we present the RSPC replica man-

gement, including: replica creation (When to replicate?), replica

lacement (What and where to replicate?) and replica factor ad-

ustment (How many replicas to create?) while ensuring an eco-

omic profit for the provider.

.1. Replica creation

RSPC replica creation is considered only in the following sce-

arios:

(i) Initially, when satisfying a minimum availability objective

SLOAV, and

(ii) When the RT objective (SLORT) is not satisfied. This is

checked by estimating the RT of a tenant query Q (RTQ) be-

fore its execution. Then, a replication may be necessary to

satisfy SLORT again. The replication decision relies on: (a)

a cost model that estimates RTQ and (b) an economic cost

model that estimates the provider profit (Q_Profit) when ex-

ecuting Q while considering a replica creation.

.1.1. Replication for satisfying SLOAV

Authors in Wei et al. (2010) affirm that too many replicas may

ot increase availability. Thus, ensuring a given SLOAV corresponds

o maintaining a minimum number of replicas for each data set

, e.g., triplication is considered in HDFS (Cheng et al., 2012). As

hown in Algorithm 1 (line 2), RSPC replicates initially each data

et, e.g., a DB relation, (Repl_Fact_Min) times. Repl_Fact_Min corre-

ponds to the minimum number of replicas that satisfies SLOAV.

hus, the number of replicas of d (Repl_Fact_d) should always be

uperior to Repl_Fact_Min.

In order to satisfy SLOAV, each data set d ∈ Nijk within DCij ∈
Gi is replicated initially on: (a) a node Nijk’ ∈DCij (k’ �= k), with

ijk’ the least busy node ∈ DCij, (b) a node∈ DCij’ ∈ RGi (with j’ �=
) with DCij’ , a neighbour DC of DCij, and (c) a node across each

egion RGi’ (i’�= i).

.1.2. Replication for satisfying SLORT

Suppose that a cloud provider receives thousands of (read-only)

enant queries. Suppose also that a given tenant query is executed

http://www.microsoft.com/en-us/server-cloud/cloud-os/global-datacenters.aspx
http://www.google.com/about/datacenters/inside/locations/
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Algorithm 1

RSPC Replica Creation.

Input: RTQ, RT_SLO_PSQ, RT_SLO_PQ, NSetQ, Repl_Fact_Min, Repl_Fact_d. Initially, NQ=0.

Output: Replica creation on NodeP.

1. Begin

// Initial SLOAV satisfaction

2. While (∃d/ Repl_Fact_d < Repl_Fact_Min) then {d replica creation}

// SLORT satisfaction

3. Before each query Q execution

4. {If (RTQ < RT_SLO_PSQ) then No Replica creation;

5. Else {if (RTQ < RT_SLO_PQ) then

6. if (NQ < NSetQ) then No replica creation; NQ++;

7. else — > replication per set of queries

if (NodeP is found / (RTQ< RT_SLO_PSQ & Q_Profit> 0)

8. then {New replica creation on NodeP; NQ=0}

9. Else // RTQ > RT_SLO_PQ — > per-query replication

10. if (NodeP is found / (RTQ < RT_SLO_PSQ & Q_Profit > 0)

11. then {New replica creation on NodeP; NQ=0}

12.}}

13. Q execution

14. End
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on an overloaded node or requires a remote access to distributed

data sets. This may increase the RT of such a query.

The proposed RSPC strategy estimates whether SLORT is satis-

fied or not before the execution of each tenant query Q. For this

aim, RTQ is estimated. It corresponds to the estimated elapsed

time from the initiation to the completion of Q (Ozsu and Val-

duriez, 2011). RT estimation is investigated in a further section. The

estimated RTQ value determines whether:

(i) There is no replication, i.e., no replication is required. It

means that SLORT is satisfied. It occurs if RTQ < RT_SLO_PSQ

(line 4 in Algorithm 1). RT_SLO_PSQ is an agreed RT thresh-

old defined in the SLA. Its value is previously negotiated be-

tween the provider and each tenant. It depends on the needs

of applications or on the tenant’s willingness to pay more

for a strict RT threshold (requiring more resources to the

provider) or a little less for a relaxed RT threshold (requiring

less resources to the provider), or

(ii) A replication may be triggered. In this case, two replication

types are possible: per-query replication or replication per

set of queries:

Per-query replication. If the estimated RTQ is superior to

RT_SLO_PQ, a data replication is immediately considered (line 9 in

Algorithm 1). RT_SLO_PQ is a critical (maximum) query RT thresh-

old defined in the SLA, with RT_SLO_PQ > RT_SLO_PSQ. It is previ-

ously established by the provider in order to limit the penalties

paid to the tenant. This replication is called ‘per-query’ since a

replication is considered when the estimated RT of a single query

exceeds RT_SLO_PQ.

Replication per set of queries. Managing data replication in a

per-query way may increase RTs, especially with a high query ar-

rival rate. In order to reduce the replication overhead generated

by repetitive replications, RSPC most often deals with a replication

per set of queries. In this case, a data replication is considered if

the estimated RTQ belongs to [RT_SLO_PSQ, RT_SLO_PQ] for a given

number of times, i.e., a number of past queries were also in this in-

terval. By this way, we avoid creating a new replica each time RTQ

exceeds a non-critical threshold (RT_SLO_PSQ). Hence, the replica-

tion per set of queries is triggered more often than the per-query

replication.

In Algorithm 1, SLORT is still satisfied if no more than NSetQ

queries have an estimated RT ∈[RT_SLO_PSQ, RT_SLO_PQ] (line 6).

A replication per set of queries is considered if RTQ ∈[RT_SLO_PSQ,

RT_SLO_PQ] for the NSetQth time (line 7). NQ corresponds to the

number of queries for which the RT was estimated in this interval.
.1.3. Ensuring the provider profit

Even if a replication is considered (per-query or per set of

ueries), a replica is really created only if a node that could re-

eive a new replica is found so that SLORT is satisfied again, i.e.,

TQ < RT_SLO_PSQ. Furthermore, this replication must be profitable

or the provider (lines 7 and 10 in Algorithm 1). For this aim, the

conomic benefit of the provider (Q_Profit) is also estimated before

eciding to replicate (before the execution of Q). This leads to the

stimation of the provider’s revenues (Q_Revenues) and expenses

Q_Expenses) as shown in Formula (1).

_Prof it = Q + Revenues − Q_Expenses (1)

Ensuring profitability for the provider when executing Q means

hat its revenues amount must be superior to its expenses amount

hen several tenants are served. Estimation of these costs is inves-

igated in a further section.

To summarize, a replica creation occurs: (i) initially, when

atisfying SLOAV, or, (ii) before the execution of each query Q,

replica creation is considered if SLORT is not satisfied. It oc-

urs if: (RTQ > RT_SLO_PQ), i.e., replication per-query, or, if (RTQ

[RT_SLO_PSQ, RT_SLO_PQ] when the estimated RTs of NSetQ-1

ast queries were also in this interval), i.e., replication per set of

ueries. However, a new replica is really created only if a replica

lacement NodeP is found so that (RTQ < RT_SLO_PSQ) is satisfied

gain and Q_Profit > 0. Table 1 summarizes the parameter notations

sed in this paper.

.2. Replica placement heuristic

Without an efficient replica placement, replicas may be dis-

ributed in an unbalanced way. In consequence, some nodes may

ontain more replicas than they can support, which generates an

verload. Replica placement among nodes has been proven to be

P-hard (Kumar et al., 2014).

Let’s assume QEP: <Q, NEP> a given Query Execution Plan that

s provided for each tenant query Q with Q: {Q0, Q1,…, Qp,… Qn-1}

set of n operators, e.g., joins, and a Node Execution Plan NEP:

Nijk, Nijk’,…, Nij’k} with (j �= j’ & k �= k’) a set of nodes within

same region RGi. NEP includes both nodes that execute Q and

odes that store all data sets, e.g., relations, required by Q and

heir existing replicas. Suppose that QEP does not satisfy SLORT.

hus, a replica placement NodeP should be selected to receive a

ew replica in order to satisfy SLORT in a profitable way. For this

im, NodeP should have low load, enough storage space and suffi-

ient NB to serve the new replica.
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Table 1

Summary of parameter notations.

Parameter abbreviation Meaning

Nijk or VMijk Virtual machine ∈ DCij ∈ RGi

DCij A data center DCij∈ RGi

RGi A region RGi

SLOAV Minimum availability objective

SLORT Response time (RT) objective

RTQ The estimated RT of Q

RT_SLO_PQ Critical RT threshold (per-query repl. is considered each time RTQ > RT_SLO_PQ)

RT_SLO_PSQ Lower (non-critical) RT threshold (repl. per set of queries is considered if RTQ ∈ [RT_SLO_PSQ, RT_SLO_PQ] for the NSetQth time)

Qp An operator ⊆ a tenant query Q

NodeP The selected placement node for a new replica

NBijk.NodeP Available network bandwidth (NB) between Nijk and NodeP

Loadijk Estimated load in Nijk

Repl_Fact_d Replica factor for data set d

Repl_Fact_Min Minimum replica factor for satisfying SLOAV

QEP A given query execution plan for Q

NEP Nodes ∈ RGi executing Q & storing data sets required by Q and their existing replicas

BP Billing period

Q_Profit Estimated monetary profit for the execution of Q

Q_Revenues Estimated monetary revenues for the execution of Q

Q_Expenses Estimated monetary expenses for the execution of Q

RTEQ The RT effectively measured when the provider executes Q

Ti A tenant Ti

Ti_Amount The provider’s revenue received from Ti for executing a number #Q of queries

Pen_RT A penalty (monetary amount) paid by the provider to Ti following an SLA breach
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Identifying the best placement node requires visiting all nodes,

hich can lead to an overload. Instead, we propose a replica place-

ent heuristic that provides an appropriate, i.e., an acceptable but

ot the best, replica placement NodeP. It is selected within the re-

ion RGi that contains NEP. We are not looking outside RGi as in

os et al. (2017). As a result, the search space is significantly re-

uced. Let Sdr be the size of a remote dr ∈ NodeR required by Qp⊆
, Sdl the size of a local data set dl required by Qp executed on

odeO, S(NodeP) the available storage capacity on NodeP, Loadijk the

oad estimation on Nijk provided by a workload manager within

Cij , NBNodeR.ijk the NB from Nijk to NodeR and Q_Profit the esti-

ated provider profit when a new replica creation is considered.

RSPC replica placement starts by identifying the bottleneck

esource that generates the unsatisfaction of SLORT. Two possi-

le scenarios can cause a bottleneck: (i) a bandwidth bottleneck

s generated by a transfer of required remote data dr (∈NodeR)

hrough a low NB when processing Qp. Then, satisfying SLORT con-

ists in finding NodeP with a better NB to the node that requires dr

hen NodeP receives a replica of dr or, (ii) a node that executes Qp

s overloaded despite only local data dl are required on this node.

hen, Qp should be executed on a less loaded node NodeP, which

ill also receive a new replica of dl. Below, identifying NodeP is

etailed for each scenario.

.2.1. Scenario 1: SLORT not satisfied because of a remote data

ransfer bottleneck

This situation occurs when Qp needs dr that is received from a

emote NodeR with a low NB (line 2 in Heuristic 1). We start by

dentifying NodeT ∈ NEP in DCij, which has the least NB to repa-

riate dr from NodeR (line 3), i.e., NBNodeT.NodeR = Minijk(NBijk.NodeR)

ith Nijk ∈ NEP. Then, NodeP should be identified in order to re-

eive a new replica of dr. The NB is checked between each Nijk

DCij (Nijk �= NodeR) and NodeT. The node having the best NB to

odeT is selected to be NodeP, i.e., NBNodeT.NodeP = Maxijk(NBNodeT.ijk)

line 4). It should have enough storage to store a replica of dr.

hen, if (i) RTQ < RT_SLO_PSQ (line 5) and (ii) the provider esti-

ates that it has a profit while considering this replication (line

2), dr is replicated on NodeP (line 13) and Q is executed on the

pdated NEP (now, NEP also contains NodeP). Otherwise, the pro-

ess is repeated with other remote data required by other nodes ∈
EP (line 6).
.2.2. Scenario 2: SLORT not satisfied because of an overloaded node

This situation occurs when SLORT is not satisfied because some

odes are overloaded (line 7 in Heuristic 1). We start by identifying

he most loaded (busy) node NodeO ∈ NEP that holds a local data

et dl when executing Qp (line 8), i.e., LoadNodeO = Maxijk(Loadijk).

uppose that NodeO ∈ DCij. The next step consists in identifying

he less loaded node ∈ DCij (line 9), i.e., LoadNodeP = Minijk(Loadijk),

o that it could receive a replica of dl, i.e., S(NodeP) > Sdl. It could

lso execute Qp so that RTQ < RT_SLO_PSQ (line 10). If SLORT is not

et satisfied, the process is repeated with other nodes ∈ NEP and

o on (line 11). On the other hand, if NodeP is found so that SLORT

s satisfied and the provider has an economic benefit, a replica of

l is created on NodeP (now, NodeP ∈ NEP) Finally, Q is executed

n NEP.

In both scenarios, if NodeP is not found or replication is not

rofitable, Q is executed on the initial NEP and penalties are paid

y the provider to its tenant.

.3. Replica factor adjustment

A static over-provisioning of replicas constitutes a naive solu-

ion, which would mostly result in resource over-utilization and

ower provider revenues (Bonvin et al., 2011). We have seen that

SPC deals with an incremental replication. As long as it is nec-

ssary and profitable, replicas are created by one in order to

atisfy SLORT. However, creating a new replica consumes addi-

ional resources, e.g., NB and storage, which increases the ex-

enses of the provider. Then, the provider should avoid unnec-

ssary replications. As an example, replicas of unpopular data in

heng et al. (2012) are erased in order to save storage resource

onsumption while ensuring fault tolerance. In this paper, we pro-

ide a dynamic replica factor adjustment in order to minimize re-

ource consumption while satisfying SLORT.

Instead of a periodic replica factor adjustment as in

os et al. (2017), the replica factor adjustment in RSPC is de-

ected through the RT estimation as shown in Heuristic 2. It

ccurs when SLORT is satisfied over time. It is considered when

TQ is far below RT_SLO_PSQ, i.e., RTQ ≤ β × RT_SLO_PSQ, with

< 1 (its value is established by the provider). In this case, it

eans that some nodes are under loaded or some replicas are less

ccessed and therefore unnecessary.
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Heuristic 1

RSPC replica placement.

Input: Set of Nijk∈ NEP∈ RGi, Qp⊆Q requires remote dr (∈ NodeR) and/or local dl (∈ NodeO executing Qp).

Initially, we suppose that SLORT is not satisfied & NEP’=NEP.

Output: NodeP (replica placement node).

1. Begin

2. If (dr �=∅) then // Remote data transfer bottleneck

3. {Find NodeT (∈NEP) that requires dr/ NBNodeT.NodeR=Minijk(NBijk.NodeR)

4. Find NodeP∈DCij/ NodeP �∈ NEP & NBNodeT.NodeP= Maxijk(NBNodeT.ijk)

5. if ((NodeP �=∅) & S(NodeP)> Sdr & (RTQ < RT_SLO_PSQ)) then

{NEP<– NEP- NodeR+ NodeP; goto 12}

6. else {NEP<– NEP- NodeT;

if NEP=∅ then {NEP= NEP’; goto 14} else goto 3}}

7. Else //Overloaded NodeO

8. {Find NodeO (∈ NEP) that requires dl / LoadNodeO= Maxijk(Loadijk)

9. Find NodeP∈DCij/ NodeP �∈ NEP & LoadNodeP= Minijk(Loadijk)

10. if ((NodeP �=∅) & S(NodeP)> Sdl & (RTQ < RT_SLO_PSQ)) then

{NEP<– NEP – NodeO+ NodeP; goto 12}

11. else {NEP<– NEP - NodeO; if NEP=∅ then {NEP= NEP’; goto 14} else goto 8}}

12. If (Q_Profit > 0) then // Provider profit check

13. dr (dl respect.) is replicated from NodeR (NodeO respect.) to NodeP

14. Q execution on NEP

15. End

Heuristic 2

RSPC unnecessary replica removal.

Input: NEP, Qp⊆ Q, β , RT_SLO_PSQ, RTQ, d (data set required by Qp), Repl_Fact_Min, Repl_Fact_d.

Output: N_Remov the selected node hosting the replica to be removed.

1. Begin

2. If (RTQ ≤ β × RT_SLO_PSQ) then

3. {Find d∈ N_Remov∈ NEP / d is the least popular data set

4. If (Repl_Fact_d > Repl_Fact_Min) then

5. {Compress a replica of d∈ NEP (can be deleted after T);

6. Repl_Fact_d= Repl_Fact_d - 1}

7. else goto 3 & repeat with another data set required by Qp}

8. End
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Data popularity constitutes an important parameter considered

by many strategies, e.g., the most requested data are replicated in

Ananthanarayanan et al. (2011). A popularity of a data set d is de-

termined by analyzing the access to d from users during a unit

of time (Ranganathan and Foster, 2001). Concerning the selection

of unnecessary replicas, RSPC selects the replica of the least pop-

ular data set d required by Qp. Replicas of unpopular data waste

the storage resource and generate considerable bandwidth costs

(Liu et al., 2018).

Suppose that d is stored in N_Remov ∈ NEP (line 3). Then,

the least accessed replica (of d) is selected within NEP. In RSPC,

we do not remove this replica since it might be accessed again

in the near future. We propose to compress this replica as in

Liu et al. (2018) to avoid recreating it later. After that, if it is not

accessed during a given period of time T (set by the provider), it

is permanently deleted (line 5). However, deleting a given replica

is not systematically done since SLOAV should also be satisfied, i.e.,

Repl_Fact_d ≥ Repl_Fact_Min.

Also, some important data may have higher priority of obtain-

ing relatively more replicas. A good solution is to assign a weight

for each data and then create a large number of replicas for the

weighted data. We defer this issue to future work.

4. Query response time estimation

Although several approaches are possible for storing and pro-

cessing data, e.g., in NoSQL systems, the success of commercial

relational clouds, e.g., (Amazon Relational Database Service (RDS),

2019), proves that relational DBMSs are still useful in the cloud era.

Let’s assume that a cloud receives DB tenant queries. Let’s also

assume that a DBMS query optimizer provides our strategy with

a near-optimal QEP before the execution of each tenant query Q
ithin a region RGi. It provides the location of all required rela-

ions and their replicas within RGi.

RSPC checks whether the given QEP satisfies SLORT based on

he estimation of RTQ. For this aim, the costs of all resources

equired for the execution of Q are estimated as given in For-

ula (2) (Tomov et al., 2004). Thus, the costs of processing Q

CPU_Q_Cost), data access Input/Output (IO_Q_Cost) and data trans-

er between nodes (Transf_Q_Cost) are estimated before the execu-

ion of Q.

TQ = MAX[(CPU_Q_Cost + 10_Q_Cost), Trans f _Q_Cost] (2)

We assume that CPU and I/O resource consumptions do not oc-

ur simultaneously on a single node. We also assume that a query

xecution can start before the transfer of all data, e.g., as soon as a

ignificant amount of data such as a page becomes available lo-

ally. We benefit from several studies in distributed DBMS, e.g.,

Tomov et al., 2004), dealing with a query RT estimation. In what

ollows, we estimate the RT of a DB query when considering the

bove costs. Then, we highlight some important factors that im-

act this estimation.

.1. RT. estimation of a DB query

RT estimation of a single query with no dependent operations,

.e., no joins, is relatively simple. In contrast, estimating the RT of

query with multiple dependent operations such as joins is more

ifficult (Tomov et al., 2004). In what follows, we estimate the RT

f a relational multi-join DB query. We consider the join operator

n its simple hash version. A hash table is built in memory through

he Build operator. Then, the join result is produced through the

robe operator (Ozsu and Valduriez, 2011) as shown in Fig. 3.

Definitions and assumptions. Let QEP: <Q, NEP> with Q: {Q0,

,…, Q } a set of n join operators, i.e., Q is the join result of
1 n-1
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Fig. 3. Example of a dependency graph for a right-deep query tree.
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n + 1) relations (R0, R1,…, Rn). NEP is a set of nodes scattered over

Cs within a region RGi. It contains nodes that execute operators

f Q and also all nodes that hold the required relations and their

eplicas. For ease of presentation, we assume that each node has

large enough memory to hold hash tables. We also assume that

he effect of bucket overflow is believed not to affect the processor

erformance. Recall that a DBMS catalog stores statistical informa-

ion about DB relations that we based on when estimating RTQ. We

enefit from some studies, e.g., (Tomov et al., 2004), to obtain an

ccurate estimate of the selectivity.

Let NTi be the number of tuples of Ri, Si the size of a Ri tuple (in

ytes). Iread/Iwrite the #inst to read/write a data page from/to a disk,

Size the number of tuples per page, ITuple the cost of extracting a

uple from a page in memory, IBuild/Probe the number of CPU in-

tructions each tuple needs for relation building/probing, NTBi the

uild relation size (number of tuples) of the ith join and NTPi the

robing relation size of this join. Let also TCPU be the duration of a

PU instruction.

Example of a DB query. We focus on a right-deep query tree

s shown in Fig. 3, i.e., Q = (R0 join (R1 join (R2 join (… join (Rn-1

oin Rn)…). It provides the best potential for exploiting parallelism.

lso, the size of a Build can be more accurately predicted since

he cardinality estimates are based on predicates applied to base

elations.

RT estimation. All scans of relations Sc_Ri followed by build

perators Bi (enclosed by dotted lines in Fig. 3) are independent.

ence, hash tables can be built in parallel (independent paral-

elism) in order to produce the different Bi. As a result, only the

ongest path (Sc_Rn-i-1 followed by Bi) is taken into account when

stimating the CPU cost of building hash tables. This justifies the

sing of MAX in the first part of Formula (3) (Hsaio et al., 1994).

hen, we add the required cost for executing n probe operators

hat constitutes a pipeline chain. Each probe operator Pi consumes

he output of the corresponding Bi. It begins after the end of Pi-1

NTPi is the size of the (i-1)th join operation, except NTP0 = NTn in

ig. 3). The estimated CPU time when executing n joins is as fol-

ows:

PU_Q_Cost =
[

MAXn
i=0

((
NTi/Psize × Iread

)
+

(
NTi × ITuple

)
+(NTBi−1 × IBuild)) +

n−1∑
i=0

(NTPi × IProbe)

]

×TCPU × (1 + α + L ) (3)

ith α > 0, a weighting factor, including hardware capabilities, e.g.,

he processing rate, the average I/O disk throughput and caching
apabilities on different Nijk. Let L be the average load factor that

akes into account the load in each Nijk concerned by the execution

f Q. We discuss the load on Nijk in the next subsection. Dealing

ith left-deep and bushy query trees requires only some adjust-

ents, e.g., in a left-deep query tree, NTBn is equal to the size of

he last join operator (NTPn-1) except the first Build (equal to NTn).

0_Q_Cost =
n∑

i=0

(
NTi × Si

PSize

)
× tpio (4)

hen executing Q, the required relations are read from the disk

f the nodes hosting these relations. Whether remote or local data

re concerned, I/O resources are consumed. The time required for

eading depends on the size of the data read from the disk. Let

s deal with the cost of reading (n + 1) relations. Let tpio be the

isk service time per page. The estimated I/O cost of Q is given in

ormula (4).

The execution of Q also requires data transfer between different

odes. Then, the NB available between nodes is taken into account.

et NB be the average NB (bytes/s) between the nodes ∈ NEP in-

olved in the execution of Q. Here, each intermediate relation Inti

resulting from a Probe Pi) is always sent to the node that executes

he next join (except the last Pn-1 that produces the final result).

he NB consumption also depends on the amount of data trans-

erred. Let SInt be the size (in bytes) of Inti tuple. The estimated

ata transfer cost is shown in Formula (5).

rans f _Q_Cost =
[

n−1∑
i=0

(NTPi × Si) + (NTn × Sn)

]
/NB (5)

.2. Important factors for the RT estimation

Different factors are taken into account when estimating the RT

f Q. We have seen that data size and NB (between nodes within a

egion in RSPC) constitute important factors that significantly im-

act the RT estimation. In what follows, we also consider the work-

oad on each node that executes Qp⊆ Q.

oadi jk =
ARi jk∑
p=1

(CPU_Qp_Cost) × (1 + C) (6)

Let Loadijk be the estimated workload on a given Nijk. It takes

nto account the arrival rate AR on Nijk (ARijk) that corresponds

o the number of concurrent Qp executed on Nijk by unit of time.

hus, Loadijk depends on the sum of computing costs of all Qp ex-

cuted or awaiting execution on Nijk as shown in Formula (6) with

> 0, the query complexity factor in Nijk. It corresponds to the

umber of executed joins on Nijk, i.e., the number of hash tables

n Nijk. The average of all Loadijk (in all nodes concerned by the

xecution of Q) corresponds to the average load factor L introduced

n Formula (3). CPU_Qp_Cost corresponds to the computing cost es-

imation of Qp. Its estimation (in s) depends on the number of in-

tructions #Inst required for processing Qp as shown in Formula

7).

PU_Qp_Cost = #lnst × TCPU × (1 + a) (7)

. Management of provider economic costs: economic cost

odel

A cloud provider aims to generate profits when executing the

enant’s queries while meeting tenant SLO requirements. For this

im, a replication can be triggered in order to satisfy SLORT and

hus avoid the payment of penalties to its tenants. In RSPC, a new

eplica is created only if the estimated monetary incomes received
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by the provider (Q_Revenues) are superior to the estimated mone-

tary expenses (Q_Expenses) required for executing Q. In what fol-

lows, we propose a provider economic cost model that estimates

Q_Revenues and Q_Expenses when executing Q in a multi-tenant

context.

5.1. Estimation of the provider’s revenues and expenditures

5.1.1. Provider’s revenues

In order to improve their profits, providers implement a re-

source sharing among multiple tenants by consolidating various

tenant’s applications on a single system. Thus, multiple tenants

are run on a same physical server (Long et al., 2014), e.g., a ten-

ant can share a DBMS with another in the context of databases

(Sousa et al., 2018). In return, each tenant pays the rent of re-

sources to the provider according to the ‘pay as you go’ model, i.e.,

a tenant only pays what it consumes (Armbrust et al., 2010).

Q_Revenues =
(

n∑
1

(Ti_Amount)/#Q

)
+ Rent_XaaS (8)

In the proposed economic cost model, the provider serves sev-

eral tenants and could receive two different amounts as shown in

Formula (8):

(i) The service amount (Ti_Amount) received from each ten-

ant Ti served by this provider for the resources allocated,

which increases the economic provider profit. Some commer-

cial providers, e.g., Google Cloud, charge a monthly rental of

resources (for subscribers) when others charge for a shorter

period, e.g., one hour with Amazon, or for a given number of

queries. We consider pricing for a given number of queries #Q,

e.g., 0.6$ per 1000 queries. Then, it is possible to calculate the

expected income per-query (Q_Revenues). Recall that when exe-

cuting a tenant query, the provider could create one or more

replicas in order to satisfy SLORT. Therefore, a tenant is not

billed for the number of replicas created when its query is ex-

ecuted.

ii) The probable average price of a service credit (Rent_XaaS) re-

ceived when the provider rents a given XaaS service to another

provider (Serrano et al., 2016).

Increasing the number of tenants through resource sharing de-

creases the per-tenant performance but reduces the provider over-

all operating cost (Long et al., 2014). Thus, it is desirable to in-

crease the number of tenants in condition that the available re-

sources are sufficient to meet the tenants’ objectives, e.g., SLORT.

With the same pricing policy for all tenants, the optimal number

of tenants to serve is equivalent to the largest number of tenants

that the provider can serve while satisfying the SLA.

5.1.2. Provider’s expenditures

The provider has to pay the operating cost of each server ex-

ecuting Q or storing/transferring the data required for that exe-

cution. Thus, the provider’s expenditures correspond to the total

price of all these resources. The estimate of these expenses is per-

formed before the execution of Q. It is given in Formula (9) that

deals with the following denotations: Let RTQp be the estimated

RT needed to execute Qp ⊆ Q. Let #VM be the number of required

nodes that execute operators of Q. Let CPU_Cost be the CPU cost by

million instructions or by unit of time, e.g., one hour in Amazon’s

cloud, for using a node allocated to execute Qp.

The cost of replication is included to the provider’s expenses.

We take into account the cost of estimating both the RT and the

provider’s profit (Estim_Cost). Also, NB costs are consumed during

the data transfer and storage costs are consumed at the destina-

tion at each replica creation. As the number of replicas increases
s the provider’s expenditures increase. This is why RSPC considers

n elastic resource management through a dynamic replica factor

djustment as described above. It permits to reduce the provider’s

xpenditures. Let Sdl be the size of each stored data set. Let Sdr

e the size of each transferred data set including the new repli-

as created. #D corresponds to the number of required data sets

ncluding their replicas. The storage of each of them has a mone-

ary cost Stor_Costijk according to the prices applied in each DCij.

he network cost Netw_Cost for the access/transfer to/of r’ remote

ata is also considered. It corresponds to the average cost of data

ransfers when executing Q. Obviously, it includes the cost of data

ransfer when creating a new replica.

_E xpenses =
#V M∑
p=1

(
RTQ p × CPU_Cost

)
+

#D∑
l=1

(
Sdl_Costi jk

)

+
r′∑

r=1

(Sdr × Netw_Cost)

+E stim_Cost + Avg_Past_Pen_RT

+XaaS_Cost + lnv_Cost (9)

Penalties paid by the provider to its tenants are also factored

nto the economic cost model as shown in Formula (9). This cor-

esponds to the probable amount paid from the provider to Ti

hen one/several SLO is/are not satisfied. Despite the provider

akes necessary precautions, e.g., replication, in order to avoid the

ayment of a penalty, there may be some queries that do not sat-

sfy SLORT. Indeed, we rely on the average penalty cost per query

vg_Past_Pen_RT paid by the provider to its tenants in the previous

P. Also, the provider must take into account the price of the in-

estments, e.g., material, software licenses and power/energy costs

Inv_Cost). Finally, when the provider leases a given XaaS service

rom another provider, its expenses could include the price of the

aaS rental (XaaS_Cost).

.2. Penalty management

When the provider executes Q with an effective RT greater than

T_SLO_PSQ, i.e., without creating a replica that satisfies SLORT, a

iolation of the SLA is recognized. It is computed as a penalty

mount paid by the provider to its tenant. Here, we only focus on

he SLORT violation.

Let RTEQ be the RT effectively measured when the provider exe-

utes Q. As shown in the RSPC penalty management (Algorithm 2),

hen RTEQ < RT_SLO_PSQ, no penalty is paid (line 2). Otherwise, a

rovider pays a penalty Pen_RT to its tenant (line 4). Pen_RT is also

efined in the SLA and corresponds to the penalty amount paid

ach time RTEQ exceeds RT_SLO_PSQ. In order to minimize penal-

ies, we proceed as follows: when RTEQ ∈ [RT_SLO_PSQ, RT_SLO_PQ],

he provider accepts to pay Pen_RT (after trying to avoid them

hrough data replication). However, each time (RTEQ > RT_SLO_PQ)

s verified, i.e., per-query replication is triggered, the provider also

ays Pen_RT while incrementing the value of V_Nber that corre-

ponds to the number of times that RTEQ exceeds RT_SLO_PQ.

Frequent SLA violations are damaging to the image of the

rovider. Hence, SLA violations should be reduced as much as

ossible. We propose to limit the number of critical SLA vio-

ations, i.e., V_Nber < Critical_V_Nber, especially when the to-

al volume of data (Data_Vol) significantly increases compared to

he DB volume agreed in the SLA (Vol_SLO) as shown in line 6

f Algorithm 2. If these two thresholds, i.e., Critical_V_Nber and

ol_SLO, are reached simultaneously, the provider can renegotiate

he value of RT thresholds (on the rise) with its tenant as well as

he service amount paid by the tenant.

Reducing the number of SLA violations reduces penalty costs.

hen analyzing formulas (1) and (9), it is clear that reducing
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Algorithm 2

RSPC penalty management.

Input: RTEQ, RT_SLO_PSQ, RT_SLO_PQ, Pen_RT, Data_Vol, Vol_SLO, Critical_V_Nber. Initially, V_Nber=0.

Output: Pen_RT paid from the provider to its tenant Ti .

1. Begin

2. if RTEQ < RT_SLO_PSQ then no penalty

3. else

4. {if (RTEQ < RT_SLO_PQ) then {Provider pays Pen_RT to Ti}

5. else {Provider pays Pen_RT to Ti; V_Nber++}

6. if ((V_Nber == Critical_V_Nber) and (Data_Vol > Vol_SLO)) then

7. {Negotiating new RT_SLO_PSQ/new RT_SLO_PQ; V_Nber= 0}}

8. End
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Table 2

Configuration parameters.

Parameter Value

Number of regions (m) 3

Number of DCs within a region (n) 10

Number of VMs within a DC (q) 1000

Average (Avg) size of a relation 700 Mb

Avg. available inter-region BN (delay respect.) 500 Mb/s (150 ms respect.)

Avg. available inter-DC BN (delay respect.) 1Gb/s (50 ms respect.)

Avg. available intra-DC BN (delay respect.) 8 Gb/s (10 ms respect.)

Average size of a relation 800 Mb

Average VM processing capability 1500 MIPS

Average storage capacity/ VM 10 Gb

Billing Period (BP) duration 10 min

#queries/ BP [3000, 48,000]

RT_SLO_PQ 180s

RT_SLO_PSQ {50, 100, 150}s

Provider revenues/ 1000 queries {1, 0.8, 0.6}$

Average Stor_Cost 0.15$/Tb

Intra-DC Netw_Cost 0.0005$/Gb

Intra region Netw_Cost 0.002$/Gb

Inter region Netw_Cost 0.07$/ Gb

Average CPU_Cost 1$/109 MI

Penalty/ violation (P_RT) 0.0025$

NSetQ 10

Repl_Fact_Min 4
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s much penalty cost as possible without increasing the cost of

eplication, as we do here, improves the economic profit for the

rovider.

. Experimental analysis

In order to evaluate the cost-effectiveness of RSPC, we compare

ts performance alongside four replication strategies proposed for

loud systems: (i) the Cost-effective Dynamic Replication Manage-

ent strategy (CDRM) (Wei et al., 2010), (ii) the PErformance and

rofit oriented data Replication strategy (PEPR) (Tos et al., 2017),

iii) the Dynamic Cost-aware Re-replication and Re-balancing strat-

gy (DCR2S) (Gill and Singh, 2016) and (iv) the Dynamic Popular-

ty aware Replication Strategy (DPRS) (Mansouri et al., 2017). In

DRM, a replica is placed on the node with the lowest blocking

robability in order to reduce data access skew, which improves

he load balance. A blocking probability is calculated on each VM.

owever, CDRM does not consider the economic aspects and SLA

atisfaction as a decision criteria. PEPR benefits from the NB hier-

rchy, like RSPC, to reduce the NB consumption and takes into ac-

ount the provider profit when a new replica is created. However,

t only deals with a per-query replication. DCR2S aims to create a

eplica for a data set if its popularity exceeds a threshold. Through

he concept of knapsack, replicas are re-replicated from higher-cost

Cs to lower-cost DCs in order to reduce the cost of replication.

oad balancing of resources is neglected and the replication cost is

xed in advance (within a given budget). Finally, DPRS replicates

nly the top 20% of frequently accessed data on the best locations

ccording to the number of users’ interests, free storage space and

ite centrality. Although the download time is reduced through the

sing of parallel downloading, it does not profit from the NB hier-

rchy.

.1. Experimental setup and benchmark description

CloudSim (Calheiros et al., 2010), a popular and an open source

loud computing simulation tool, is used to simulate DCs. We sim-

lated a cloud with 3 regions as shown in Fig. 1. Within each

egion, we simulated 10 DCs. Then, 1000 heterogeneous VMs are

mplemented in each DC. We have extended CloudSim to support

ata replication, query placement and some important require-

ents: (i) each VM has storage, memory and computing capacity

nd (ii) hierarchical NB capabilities and latencies are simulated be-

ween VMs, DCs and regions. For resource characteristics, we based

n Barroso et al. (2018) to realistically represent a typical Cloud

nvironment. Economic concepts are also taken into account: (i)

monetary pricing is defined for each resource in accord with

oogle Cloud, AWS and Microsoft Azure4 prices, (ii) a tenant is
4 Amazon S3 Pricing. https://aws.amazon.com/s3/pricing/. Azure storage pricing.

ttps://azure.microsoft.com/en-us/pricing/details/storage/. Azure data transfer pric-

ng. https://azure.microsoft.com/en-us/pricing/details/data-transfers/. Google Cloud

ricing https://cloud.google.com/compute/pricing?hl=fr. March 2019

T

2

harged for a given number of queries (here #Q = 1000) and (iii)

n SLORT violation is computed as a penalty amount.

We based on the TPC-H data generation program with skew.5

wo data distributions are considered: (i) uniform distribution that

rovides a naive baseline and (ii) non uniform, here zipf, distribu-

ion, Breslau et al. (1999) that is designed to react to data pop-

larity and models unconstrained accesses from an independent

opulation such as Internet users. The zipf factor (z) that con-

rols the degree of skew is set to 1. The arrival rate of DB queries

ollows a Poisson distribution. Our experiments dealt with 3000,

2,000, 30,000 and 48,000 queries during a BP. The broker assigns

loudlets (associated to queries) to randomly selected VMs to ac-

ess relations themselves distributed on randomly selected VMs.

e considered a subset of TPC-H6 queries {Q4, Q10 and Q8} for

nalytical purposes. These queries have different level of complex-

ty {1, 3 and 7 joins respectively} when a right-deep query plan

s pre-determined for each query. We call them simple, medium

nd complex queries respectively. We simulated a parallel execu-

ion of queries launched simultaneously by several tenants. A read-

nly DB relation constitutes the granularity of replication. We dealt

ith a simulation since it allows us to directly control some pa-

ameters in order to understand their individual impact on perfor-

ance, e.g., query arrival rate and system configuration variations.

able 2 describes the main parameters used in our experiments.
5 https://www.microsoft.com/en-us/download/details.aspx?id=52430. March

019.
6 TPC-H benchmark specification, 2019, [online]: http://www.tpc.org/tpch/.

https://aws.amazon.com/s3/pricing/
https://azure.microsoft.com/en-us/pricing/details/storage/
https://azure.microsoft.com/en-us/pricing/details/data-transfers/
https://cloud.google.com/compute/pricing?hl=fr
https://www.microsoft.com/en-us/download/details.aspx?id=52430
http://www.tpc.org/tpch/
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6.2. Experimental results

We have measured (during a BP) the following metrics: (i) the

average replica factor and the average measured query RT with dif-

ferent distributions, (ii) the replica factor adjustment, (iii) the im-

pact of the query arrival rate, the system configuration, and the

query complexity on performance, (iv) the number of SLA viola-

tions and (v) the provider resource consumption and its expendi-

tures.

RSPC experiments dealt with different values of RT_SLO_PSQ,

from a more strict one (50 s) to a more relaxed one (150 s) with

an intermediate moderate value (100 s). The provider revenues de-

pend on these thresholds as shown in Table 2. We denote the

RSPC strategy under these thresholds by RSPC’50, RSPC’150 and

RSPC’100 respectively. The critical RT_SLO_PQ is set to 180 s. These

values are defined based on preliminary experiments.

6.2.1. Average response time and replica factor

Fig. 4(a) and (b) show the average RT and the average replica

factor obtained with the compared replication strategies when the

data distribution is uniform. We deal with queries that randomly

include simple, medium and complex queries.

When a low number of queries are submitted during a BP, e.g.,

less than 12,000 queries, PEPR presents the most important replica

factor since the replica decision is considered at the per-query

level, i.e., each time RT of a query exceeds the RT threshold (100 s

here). The replica factor in CDRM, DCR2S and especially DPRS is

more important compared to RSPC (in its three options). In fact,

RSPC does not replicate data when SLORT is satisfied while CDRM

aims to balance the workload between different nodes by creating

more replicas. DPRS provides the best RT while RSPC’150 provides

the most important RT. When the number of data access increases,

the RT also increases. When 30,000 queries are submitted during

a BP (50 queries/s), RSPC’50 presents the best RT. It creates the
ost important number of replicas in order to satisfy SLORT while

less number of replicas are created with RSPC’150. CDRM con-

iders only the access frequency and does not create more replicas

hen a load balance is achieved. DCR2S creates additional replicas

n order to improve RT since the budget is not reached.

A larger number of queries (48,000 queries that correspond to

0 queries/s) increases the replica factor, as shown in Fig. 4(a).

SPC’50, RSPC’100 and RSPC’150 require only some additional

eplica creations. RSPC’150 does not exceed the RT threshold

hile RSPC’100 and RSPC’50 RTs slightly exceed the correspond-

ng RT_SLO_PSQ. Overloaded VMs are blocked for receiving new

ueries in CDRM and popular data are updated with DPRS. This

enerates replica creations outside the region receiving the queries.

nly a few replicas are created with DCR2S. Once the cost of repli-

ation exceeds the budget, the knapsack algorithm tries to opti-

ize the cost of replication by re-replicating to lower cost DCs.

owever, load balancing is not taken into account and replicat-

ng outside the local region does not decrease the replication cost.

ence, DCR2S, DPRS and especially CDRM generate a significant RT

ncrease. PEPR generates an important RT even it creates more RT

eplicas. This confirms that repeated per-query replications gener-

te an important overhead while most of replications in RSPC are

rovided per set of queries. Recall that the RSPC’s replica factor in-

ludes the replicas (here 4) initially created to satisfy SLOAV.

We also measure the average RT for the compared strategies

ith a zipf distribution as shown in Fig. 5. The replica factor is

roportional to the data popularity. RTs of DPRS, RSPC and DCR2S

re less important than RTs obtained in Fig. 4(b) (around 11%, 9%

nd 7% respectively). DCR2S takes into account the data popular-

ty variation by assigning different weights to data accesses. DPRS

s dynamically adapted to the users’ preferences while RSPC main-

ains replicas for the most popular data. No improvements are ob-

erved with CDRM that creates replicas based on load balancing.

t is also the case with PEPR that periodically removes replicas re-

ardless of the account data popularity.

.2.2. Replica factor adjustment

Fig. 6 shows the average replica factor obtained with the com-

ared strategies and when a significant decrease is observed in

he number of queries during a BP. 24,000 queries are submitted

n the first half of the BP (80 queries/s in average), followed by

500 queries during the second half (5 queries/s in average). At

he end of the BP, the replica factor of all strategies is decreased.

ll strategies aim is to reduce the consumption of resources as the

orkload decreases. However, RSPC removes more replicas than

DRM, DCR2S, and DPRS due to the RSPC’s dynamic replica fac-

or adjustment. This proves that CDRM, DCR2S and DPRS continue

o use some of the previously created replicas even with reduced

orkloads. Here, unnecessary replicas will not receive any further
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ueries during a certain period before deleting them. We defer the

eplica compression to future work.

.2.3. Impact of the system configuration on RT

Fig. 7 shows the impact of the number of VMs per DC on per-

ormance when 30,000 queries are submitted during a BP. As the

umber of VMs per DC increases, the average RT is reduced with

ll strategies since VMs are less overloaded. With 1000 VMs per

C, the average RT decreases around 20% with CDRM and DCR2S,

nd around 25% with DPRS. This is due to the additional creation

f replicas within a local region. With even more VMs per DC

1500 VMs), DCR2S and CDRM do not create many other repli-

as since the budget threshold is already reached with DCR2S and

he load balance is achieved with CDRM. Also, the popular data

re already replicated with DPRS. The average RT obtained with

SPC’50 (RSPC’150 respectively) decreases around only 15% (8% re-

pectively). Only some additional replicas are created since the

LORT is satisfied for most queries.

With the increase on the number of regions (the total number

f VMs within the system remains unchanged), the average RTs ob-

ained with all strategies are slightly more important as shown in

ig. 8. With RSPC’50, fewer VMs are available for creating replicas

nd for executing the same number of queries while no replicas

re created across regions. In contrast, more replicas are created

cross regions with CDRM, PEPR, DPRS and DCR2S.

.2.4. Impact of query complexity on RT

We analyze the impact of query complexity on performance

hen 30,000 queries are submitted during a BP. We deal with sim-

le, medium and complex queries as shown in Fig. 9. Experiment-

ng with simple queries means that 80% of them are simple and so

n.
With simple queries, CDRM, DCR2S and DPRS provide almost

imilar RTs while RSPC’100 and RSPC’150 generate longer RTs.

owever, RSPC (in its three options) provides RTs lower than the

espective RT_SLO_PSQ. With medium complexity queries, the com-

ared strategies provide longer RTs. RSPC’50 creates more replicas

ince the average RT is not far from RT_SLO_PSQ. With complex

ueries, some VMs are overloaded. We observe increasing RTs with

ll strategies. Nodes are clearly blocked for receiving new repli-

as in a local region with CDRM. Then, inter-region data trans-

ers are required when creating new replicas with CDRM as in

PRS. Creating other replicas with DCR2S is not possible since the

udget is reached while additional overheads are generated with

he PEPR per-query replication. Then, RTs of DPRS, PEPR, DCR2S

nd CDRM increase significantly. In contrast, the average RT with

SPC’50 slightly exceeds RT_SLO_PSQ while the average RTs with

SPC’100 and especially RSPC’150 are below RT_SLO_PSQ.

.2.5. Analysis of SLA violations

SLA violation analysis can be very useful when the RT of some

ueries far exceeds the average RT. Fig. 10 shows a relationship be-

ween the number of submitted queries and the number of SLA

iolations during a BP with a zipf distribution. We assume that a

enalty amount is paid with PEPR, CDRM, DCR2S and DPRS when

he RT exceeds 100 s.

When 12,000 queries are submitted during a BP, PEPR gener-

tes the most important number of SLA violations as a result of

igher RTs while other strategies generate almost the same num-

er of SLA violations. In fact, most SLA violations are observed dur-

ng the initial replica configuration, i.e., first queries during the BP.

he aim is to avoid SLA violations through data replication. With

0,000 queries, RSPC’100 and RSPC’150 generate the least num-
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ber of SLA violations while more SLA violations are observed with

PEPR and CDRM. The average RT with CDRM and PEPR is close to

RT_SLO_PSQ but most of RT values exceed this value. With 48,000

queries, PEPR, CDRM and DCR2S generate even more SLA viola-

tions while the number of SLA violations with RSPC and DPRS in-

creases slowly. The number of SLA violations with CDRM is 6 times

(2.2 times respectively) more important than those generated by

RSPC’150 (RSPC’50 respectively).

6.2.6. Provider’s NB and storage consumptions

Fig. 11 shows the NB consumption required by the compared

strategies while considering the NB hierarchy. In RSPC, the major-

ity of data transfers are performed in the intra-region level. Inter-

region data transfers are only performed during initial replications

to satisfy SLOAV. In contrast, inter-region transfers are more fre-

quent with DCR2S, DPRS, PEPR and especially CDRM. This highly

impacts RTs since inter-region links are slower.

ENU = (#dr + #Repl)/#dl (10)

We measure the Effective Network Usage (ENU) that shows

the efficiency of the NB usage. It is calculated through Formula

(10) (Cameron et al., 2003). #dr indicates the number of times that

a node reads a relation from a remote node. #Repl corresponds to

the number of replications and #dl is the number of times that a

node reads a relation locally. The value of ENU is between 0 and

1. A lower ENU value indicates that the replication strategy is suc-

cessful in sorting data in the proper locations while the NB is uti-

lized more efficiently.

The obtained ENU values with the compared strategies are

shown in Fig. 12 when 30,000 and 48,000 queries are submit-

ted during a BP. Compared to DPRS, PEPR and especially CDRM,
SPC’50 has a reduced ENU (around 5%, 8% and 20% respec-

ively). The required data are available in local regions with RSPC.

SPC’100 and especially RSPSP’150 do not create new replicas as

ong as SLORT is satisfied, which results in fewer data transfers.

ompared to RSPC’50, the ENU of DCR2S is lower by 3% since repli-

as are not created when the budget is reached and only some

eplicas are re-replicated. More queries (48,000 queries are sub-

itted during a BP) increases the ENU value obtained with CDRM,

EPR and DPRS (9, 8 and 5% respectively) since more replicas are

reated outside the local regions, while the number of replicas

lowly increases with RSPC, e.g., the ENU value of RSPC’150 in-

reases by only 2%.

We also measure the storage consumption required by the

ompared strategies. Fig. 13 shows the storage resource percent-

ge used in the system. When only 12,000 queries are submitted

uring a BP, DCR2S, CDRM, PEPR and DPRS consume more stor-

ge resources since they create more replicas. Most of the time,

t is not necessary to create additional replicas with RSPC since

he RT is less than RT_SLO_PSQ, especially with RSPC’150. With

0,000 queries, RSPC’50 consumes more storage resources since

ore replicas are created in order to satisfy SLORT. With a more

mportant number of queries, less than 5% more storage resources

re required by RSPC’50 and DCR2S since only some replicas are

reated compared to other strategies.

.2.7. Provider’s monetary expenditures

Fig. 14 shows the total of the provider’s monetary expenditures

hen executing the tenants’ queries during a BP according to the

esources prices listed in Table 2. The provider’s expenses for the

xecution of a query are obtained according to Formula (9). They

nclude storage, network, CPU, replication and penalty costs. On the
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ther hand, tenants are billed for the 48,000 queries executed by

he provider during a BP. With RSPC’50, RSPC’100 and RSPC’150,

he provider revenue corresponds to 48$, 35$ and 29$ respectively

n accordance with the prices of executing a number of queries

#Q = 1000) as indicated in Table 2. Obviously, the provider profit

s obtained by subtracting the expenditures from the incomes as

hown in Formula (1).

Almost the same processing cost is observed when experiment-

ng with the compared strategies. As an example, the overhead

enerated by the RT estimation in RSPC is almost similar to that

enerated by calculating the blocking probability in CDRM. RSPC

enerates a significant data transfer save since the majority of

eplicas are created within a region. On the other hand, more stor-

ge consumption is required with RSPC’50 since it creates more

eplicas to satisfy SLORT. However, the storage is relatively cheap

ompared to the cost of data transfer. Also, much more penal-

ies are paid with CDRM and DCR2S while the majority of ex-

enses with DPRS and CDRM concerns the data transfer. In con-

rast, fewer penalties are paid with RSPC, especially with RSPC’150

ince the average RT does not exceed RT_SLO_PSQ. RSPC’150 gener-

tes 3 times less monetary expenses than CDRM. With equal rev-

nue, CDRM generates less profit for the provider than RSPC’100.

When comparing the profits generated by different options

f RSPC, we deduce from Fig. 14 that RSPC’50, RSPC’100 and

SPC’150 generate a profit of 23$, 15$ and 12$ respectively. Al-

hough RSPC’50 generates more monetary profits, RSPC’150 con-

umes fewer resources.

.3. Discussion

With a reduced number of queries, CDRM, DCR2S and especially

PRS achieve a slightly better RT than RSPC (in its 3 options). It is

ue to the larger number of replicas created by these strategies,

ut without taking into account the provider profit. At the price

f having a slightly higher RT but under SLORT satisfaction, RSPC

enerates less provider expenditure costs.

As the number of queries increases, VMs become busier. The

ame effect is observed with more complex queries. RSPC consid-

rs a replica creation only if SLORT is not satisfied. With CDRM,

atisfying only a load balancing objective is not sufficient to ensure

LORT. DPRS creates additional replicas based on the data popular-

ty change when these replicas are created outside the region that

eceives queries. This is not the case with DCR2S due to the lim-

ted initial budget and re-replication is not sufficient to balance the

orkload. On the other hand, per-query replication in PEPR gener-

tes an overhead that affects performance, while most replications

re provided per set of queries in RSPC. With regard to the consid-

ration of user behaviour changes, common in cloud environments,

SPC as well as DCR2S and DPRS generate best average RTs with
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a zipf distribution. Regarding penalty costs, RSPC’50 creates more

replicas to satisfy SLORT, which reduces penalty costs compared to

CDRM, DCR2S and PEPR strategies. Furthermore, more unnecessary

replicas are removed with RSPC through the dynamic replica fac-

tor adjustment, which reduces the provider expenditure costs. As

a result, the provider’s profits are increased.

With respect to resource consumption, RSPC benefits from the

NB hierarchy, which reduces the data transfer consumption while

PEPR, DPRS and mainly CDRM require inter-region data trans-

fers. Although RSPC’50 requires more storage consumption, stor-

age costs are cheaper than data transfer costs. Finally, whereas

RSPC’150 generates higher RTs while satisfying SLORT, it consumes

fewer resources while the profit of the provider is less important.

Nevertheless, more resources are available. Thus, they can be used

to generate additional profit for the provider when serving addi-

tional tenants.

7. Related work

Most of the replication work in the literature (Milani and Nav-

imipour, 2016; Malik et al., 2015) classified data replication strate-

gies in cloud systems into static (Zeng and Bharadwaj, 2014) and

Dynamic (Bui et al., 2016) strategies while other work (Tabet et al.,

2017) classified them into provider-centric (Da Silva et al., 2012)

and consumer-centric (Limam et al., 2019; Zhao et al., 2015) strate-

gies. RSPC is considered as a dynamic strategy since replicas of

each data set are created, placed and maintained dynamically

according to the user’s access patterns. Also, we deal with the

provider-centric approach that attempts to ensure the provider

profit while satisfying tenant’s SLOs. A classification according to

the achieved objective function is also proposed in Mokadem and

Hameurlain (2015). Once grouped together, these objective func-

tions better address the issues of these strategies. Here, RSPC is

based on both data and NB localities. Below, (i) we analyze the

consideration of the tenant performance/provider profit trade-off by

some existing strategies, (ii) we present some relevant techniques

used by replication strategies, (iii) we present some replication

strategies considered for multiple cloud providers, and (iv) we pro-

vide some examples of recent replication frameworks.

(i) Many replication strategies considered the replication costs

when satisfying the performance SLO. The EIMORM strategy

(Edwin et al., 2017) balanced among availability, load balanc-

ing and cost of replication when deciding to replicate. In

Bonvin et al. (2011), the performance SLO is satisfied by a

geographically-diverse placement of replicas in an economically ef-

ficient way. However, a high communication cost is observed. Fur-

thermore, like most of the proposed strategies in the literature,

the costs of replication and provider profit are not modelled as

monetary costs. In Zeng et al. (2016), the number of replicas and

their placement depend on the trade-off between performance and

monetary cost in each node. However, the load balancing is not

considered. In Casas et al. (2017), the replica factor is incremented

as long as the monetary cost of an application does not exceed its

upper limit. The work of Liu and Shen (2017) aims to minimize the

payment cost of customers through a resource reservation pricing

model while satisfying tenant’s SLO, e.g., latency. The PEPR strategy

(Tos et al., 2016) that was extended in Tos et al. (2017) aimed to

satisfy SLORT while ensuring the provider profit. However, only a

per-query replication is considered and the management of penal-

ties is not considered. In RSPC, a new replica is created only if the

provider has a monetary profit. Furthermore, the monetary costs of

replication and penalties are factored into the provider’s expendi-

tures.

(ii) Some data replication strategies are based on techniques

that achieve specific tenant SLOs. Examples of these techniques

are: compression (Liu and Shen, 2016a) for data durability, or for
educing replication bandwidth (Xu et al., 2015), multi-failure re-

ilient scheme (Liu and Shen, 2016b) for enhancing availability,

e-duplication (Nicolae, 2015) for reducing data transfer, prefetch-

ng (Mansouri and Javidi, 2018), data migration (Mansouri and

uyya, 2019), parallel downloading (Mansouri et al., 2017), data

ining (Hamrouni and Charrada, 2015), supervised learning

Bui et al., 2016), overheating similarity of nodes (Sun et al., 2018),

artitioning (Zhou and Fan, 2017) for ensuring performance and

ragmentation for optimal security (Ali et al., 2018). On the other

and, many corporations, e.g., Facebook, as well as many repli-

ation strategies (Bui et al., 2016) are based on the erasure cod-

ng technique rather than/in addition to data replication. Data

re encoded and expanded with redundant data stored across

ifferent locations to tolerate possible failures or outages (Abu-

ibdeh et al., 2010). However, data encoding/decoding may gen-

rate an overhead. In this context, authors in HyRD (Mao et al.,

016) relied on data replication to store small files and on era-

ure code technique to store large files on multiple providers. A

eneral rule is to use replication for data objects that are ac-

ive, i.e., warmer, and to use erasure coding for data objects that

re colder, i.e., inactive. Then, the more emphasis one places on

ead performance (storage efficiency respectively), the greater the

dvantage of replication (erasure coding respectively). RSPC re-

ies on the compression technique. Replicas of unpopular data are

ompressed instead of being permanently deleted to avoid creat-

ng new replicas (again) for data that will become popular again

ater.

(iii) Although most of the replication strategies cited above have

een proposed for a single cloud provider, other replication strate-

ies are deployed across multiple cloud providers (Wu et al., 2013;

ansouri and Buyya, 2019; Abu-Libdeh et al., 2010; Bessani et al.,

011). SpanStore (Wu et al., 2013) spans DCs across multiple cloud

roviders. Pricing discrepancies are exploited in order to minimize

osts when considering fault tolerance and latency requirements.

uthors in Liu and Shen (2017) and Mansouri and Buyya (2019) fo-

used on the costs of Get/Put operation of data sets. The resource

rice difference is exploited in Mansouri and Buyya (2019) to

inimize the monetary cost of replication with the assumption

hat the workload on objects is known in advance. The work

f Liu and Shen (2017) avoids, as in Abu-Libdeh et al. (2010),

he vendor lock-in problem, i.e., a tenant may not be free to

witch from one provider to another. The proposed strategy in

hen et al. (2014) is mainly designed for providing a fault-tolerance

bjective when the monetary cost of repair is reduced compared

o the erasure code technique. By replicating each data set across

egions in order to satisfy SLOAV, RSPC also provides a high level

f fault tolerance that is not the focus of this paper. Also, the

ricing difference among providers is not exploited in RSPC as

eplication decision criteria. RSPC is considered for a single cloud

rovider that operates distributed DCs in a multi-tenancy con-

ext. However, the difference in resource prices within differ-

nt DCs is taken into account when estimating the provider’s

xpenses.

(iv) Some replication frameworks have been proposed for data

nalytical solutions (Pu et al., 2015; Wu et al., 2013; Ardekani and

erry, 2014; Kloudas et al., 2015). Tuba (Ardekani and Terry, 2014)

rovided a geo-replicated key-value store with an automatically re-

onfiguration of its replica set. However, an exhaustive search is

pplied to enumerate all possible placements of replicas. Authors

n Kloudas et al. (2015) considered an optimization formulation of

ata placement, which is not scalable in large-scale systems. Au-

hors in Pu et al. (2015) used the query frequency and data ac-

cess statistics when placing data in order to reduce the bandwidth

cost between DCs. RSPC also uses statistics when estimating the

size of intermediate results in order to estimate the RT of read-

only queries. However, RSPC does not search the optimal configu-
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ation. We consider a replica placement heuristic that deals with a

educed search space.

For a more advanced comparison between these strategies, we

ave identified, in Table 3, a non-exhaustive list of some data repli-

ation strategies with respect to some important metrics. A lot of

trategies have been proposed for cloud systems. However, there

s not a single one that ensures all the tenant objectives while

onsidering the economic aspects of clouds. The main differences

etween RSPC and most of the mentioned strategies are summa-

ized as follows: (i) SLOAV and SLORT are simultaneously satisfied

hile ensuring a monetary economic profit for the provider, (ii)

he replica decision is based on the estimation of both RT and

rovider’s profit while taking into account some important param-

ters, e.g., query complexity and query arrival rate, (iii) a replica

lacement is heuristically found when the NB hierarchy reduces

he NB consumption, (iv) the replica factor is dynamically adjusted

nd (v) both penalty and replication costs are factored to the pro-

osed economic cost model.

. Conclusion and future work

We propose RSPC, a dynamic data replication strategy that si-

ultaneously satisfies tenant’s SLOAV and SLORT while ensuring a

rofit for the provider. Maintaining a minimum number of replicas,

cross regions, for each data set permits to satisfy SLOAV. Dealing

ith the SLORT satisfaction, the provider offers its tenants an RT

hreshold as a performance guarantee instead of an optimal per-

ormance. Through a proposed cost model, the RT of each tenant

uery Q is estimated before its execution within a region. A replica

reation is considered only if SLORT is not satisfied. Often, it is con-

idered per set of queries. Then, a new replica is really created in

balanced way only if a suitable replica placement node is heuris-

ically found so that SLORT is satisfied again while generating an

conomic profit for the provider. Both provider’s revenues and ex-

enses are estimated through a proposed economic cost model in

multi-tenant context. The replication costs as well as penalties

re factored into this model. Moreover, the replica factor is dy-

amically adapted to changes in the workload and user’s access

atterns.

We compare performance of RSPC alongside four other strate-

ies when executing OLAP TPC-H queries. RSPC aims to just sat-

sfy SLORT while taking into account the provider‘s profit. More-

ver, it best satisfies SLORT under important query arrival rates,

trict RT thresholds and complex queries, and adapts better to

hanges in the user’s access patterns. Hence, penalty costs are re-

uced. Data transfer costs are also reduced due to the NB hier-

rchy, which impacts the provider profit. Furthermore, replicating

er set of queries significantly reduces the generated replication

verhead.

As a future work, a balancing can be made between the num-

er of tenants and performance in order to improve the provider

rofit. In this context, we plan to prove that serving an optimal

umber of tenants through the ‘pay as you go’ model while satis-

ying SLORT results in an optimal profit for the provider. This con-

titutes a rationale behind the design of the proposed strategy. The

eplica creation/deletion decisions could also take into account the

og of past queries in order to predict which replicas should be

eplicated/deleted in advance. RSPC could also be evaluated when

sing data compression/de-duplication to further reduce resource

onsumption. Further, we project to extend our strategy to be op-

rational in a multi-provider cloud environment and compare its

erformance alongside other strategies based on techniques such

s the erasure code based redundancy technique. Finally, we plan

o implement RSPC in a real cloud environment.
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