
Int. J. Grid and Utility Computing, Vol. 10, No. 1, 2019 53

Copyright © 2019 Inderscience Enterprises Ltd.

A data replication strategy for document-oriented
NoSQL systems

Khaoula Tabet*

Laboratory of Mathematics, Informatics, and Systems (LAMIS),
University of Laarbi Tebessi,
Tebessa 12002, Algeria
Email: tabetkhaoula@gmail.com
*Corresponding author

Riad Mokadem

Institut de Recherche en Informatique de Toulouse (IRIT),
Paul Sabatier University, 118,
Route de Narbonne 31062,
Toulouse, France
Email: riad.mokadem@irit.fr

Mohamed Ridda Laouar

Laboratory of Mathematics, Informatics, and Systems (LAMIS),
University of Laarbi Tebessi,
Tebessa 12002, Algeria
Email: ridda_laouar@yahoo.fr

Abstract: Cloud providers aim to maximise their profits while satisfying tenant requirements,
e.g., performance. The relational database management systems face many obstacles in achieving
this goal. Therefore, the use of NoSQL databases becomes necessary when dealing with
heterogeneous workloads and voluminous data. In this context, we propose a new data replication
strategy that balances the workload of nodes and dynamically adjusts the number of replicas
while the provider profit is taken into account. Result analysis shows that the proposed strategy
reduces the resource consumption, which improves the provider profit while satisfying the tenant
performance requirement.

Keywords: cloud environment; NoSql databases; data replication; provider profit; performance.

Reference to this paper should be made as follows: Tabet, K., Mokadem, R. and Laouar, M.R.
(2019) ‘A data replication strategy for document-oriented NoSQL systems’, Int. J. Grid and

Utility Computing, Vol. 10, No. 1, pp.53–62.

Biographical notes: Khaoula Tabet is currently a PhD Student in Computer Science at the
University of Tebessa, Tebessa, Algeria. Her main research interests are related to information
systems, cloud computing, big data, urban management, and other related topics.

Riad Mokadem is currently an Associate Professor in Computer Science at Paul Sabatier
University, Toulouse, France, and a Member of the IRIT laboratory. His main research interests
are query optimisation in large-scale distributed environments, data replication and database
performance. He has been a Member of Organisation Committees of several conferences, mainly
DEXA’11 that was held in Toulouse. Recently, he was invited as a Guest Co-editor for a special
issue on ‘Elastic Data Management in Cloud Systems’ in the International Journal on Computer

Systems Science & Engineering (IJCSSE).

Mohamed Ridda Laouar is a Full Professor in Computer Science at the University of Tebessa,
Algeria. He received his PhD in Industrial and Human Computer Science at the University of
Valenciennes, France, in 2005. His research areas include information systems, decision support
systems, e-library systems, cloud computing and other related topics. He has contributed to
journals such as Hi Tech Library and Human Systems Management. He is the Editor of IJIST
journal and different proceedings of conferences such as of ICIST and ICSENT.

54 K. Tabet et al.

1 Introduction

The elastic management of voluminous and heterogeneous
data is one of the most important research areas in cloud
computing (Hameurlain and Mokadem, 2017). Companies
have turned to cloud environments to host their applications
and databases. They expect cloud providers to keep a certain
agreed upon of set Service Level Objectives (SLO), e.g.,
performance, defined in a Service Level Agreement (SLA)
(Stantchev and Schröpfer, 2009), a contract between a
provider and its tenants, while the ‘pay as you go’ model is
considered (Armbrust et al., 2010).

Data replication is an important technique that ensures
availability and fault tolerance while the system performances
are improved. It consists of having many copies of the same
data across multiple servers (Tabet et al., 2017). Data
replication is frequently used in: (i) Database Management
Systems (DBMS) (Perez et al., 2010), (ii) parallel and
distributed systems (Loukopoulos et al., 2005; Benoit et al.,
2008), (iii) mobile systems (Tu et al., 2006) and (vi) large
scale systems including P2P (Xhafa et al., 2012) and data
Grid systems (Mansouri et al., 2014). However, the existing
proposed strategies are not adopted in cloud systems. They aim
to obtain the best performance without taking into account the
profit of cloud providers that aim to maximise their profits.
This motivates the proposition of several data replication
strategies in cloud systems, (Wei et al., 2010; Sakr and Liu,
2012; Xue et al., 2015; Tos et al., 2016). Relational database
management systems face many obstacles in achieving those
needs. Therefore, the using of NoSQL databases becomes
necessary over the last few years, especially when dealing with
voluminous and heterogeneous data. One of the most known
NoSQL systems is MongoDB (Chodorow, 2013) which is
considered as the leading document store.

To the best of our knowledge, most of existing works in the
literature focus on obtaining high performances by using
different data replication strategies that are used through useful
data placement and load balance. Some works have focused
their attention on the improvement of auto-sharding, load
balance, and auto-scaling algorithms, e.g., (Liu et al., 2012;
Gu et al., 2015; Mohamed, 2015). Other works analyse the
differences of Mongo’s data model, query and replication
model with relational database management systems, e.g.,
(Lima et al., 2016; Mansouri and Asadi, 2014). Many of
these works are trying to take a closer look to performance by
comparing capabilities of MongoDB with other NoSQL
systems, e.g., performance comparison between MongoDB
and Cassandra in (Haughian et al., 2016). Results show that
MongoDB provides better performance. However, most of
these works focus only on the improvement of system
performance. For example, all replicas are read-only and are
updated only from the master node in the master-slave
replication model. This can cause problems when a master
node fails down. To overcome this problem and guarantee the
system performance, the replica set model was proposed. It
overcomes the fail of a primary node by auto scheduling. Then,

it offers an automatic system load balance which achieves
performance (Goel and Buyya, 2007). However, replication
costs, SLA violation and provider profit issues are neglected.

In this paper, we propose a new data replication strategy
for MongoDB NoSQL databases. The proposed strategy
aims to ensure both system performance for the tenant and
a profitability for the cloud provider. A replication of a
document is considered only if two conditions are satisfied
simultaneously: (i) the estimated response time of a tenant
query, before its execution, is greater than a response time
threshold (RespT) agreed in SLA and then, (ii) if this
replication occurs, the provider should have an economic
profit.

Dealing with the MongoDB query response time
estimation, we take into account the most important parameters
that impact the query execution, e.g., data size, number
of shards, I/O and Network Bandwidth (NB). When data
replication is considered, only popular data, i.e., having a
high access frequency during a period of time, that are
situated in overload nodes are replicated. Thus, the workload
of nodes is balanced, which affects the system performance.
The proposed replication strategy is also based on a
geographical (Goel and Buyya, 2007) and NB level (Park
et al., 2003) localities in order to place new replicas closer to
data consumers and reduce the communication costs
respectively, when replicating data. Furthermore, the number
of replicas is adjusted dynamically in order to reduce the
resource consumption, i.e., the least popular data replicas are
removed. Finally, in order to take into account the provider
profit, we estimate the revenues and expenses of the provider
when dealing with data replication. The provider should have
a real profit when considering this replication.

In order to validate the proposed strategy, we compared
it to the already existing replication strategy in MongoDB.
The results show that the proposed strategy provides
better response times while the provider profit is taken into
account. The organisation of the rest of the paper is as
follows: Section 2 provides a summary of replication
mechanisms in MongoDB. Section 3 details of the proposed
replication strategy. Section 4 contains the performance
evaluation of the proposed strategy. Finally, we conclude the
paper and give some future work.

2 Background

2.1 MongoDB

MongoDB is an open source document-oriented NoSQL
database system developed by 10gen in 2007 (Membrey et al.,
2010). It manages collections of BSON documents, provides
high performance, high availability, easy scalability through
replication and auto-sharding. The main concept in MongoDB
is the documents that present the unit of data for MongoDB.
It is equivalent to a row in a RDBMS and a collection can be
equivalent to a relation (Membrey et al., 2010).

 A data replication strategy for document-oriented NoSQL systems 55

Figure 1 Replication and sharding in MongoDB

There are different replication mechanisms in MongoDB. We
distinguish two models: the Master/Slave and the Replica set
replication models. The main difference between them is that
a replica set has the ability to an automatic failover when
primary node is unavailable by electing new one from
existing secondary nodes situated in the same cluster. In a
master-slave replication model, all replicas are read-only and
updated only from the master node after changes, which can
cause problems. When the master node fails down, there is no
possibility to write new data. Thus, the most suitable model
for replication in MongoDB is the replica set model.

In addition to the replication mechanism, MongoDB uses
another mechanism called sharding. Sharding is the process
of splitting data uniformly across clusters to parallelise the
access of data. But, it cannot ensure fault tolerance. In case a
shard fails down, the data stored on that shard become
unavailable. At the same time, the system is still able to
operate even if some parts of data are missing. Therefore, we
combine sharding with replication in the proposed strategy
because some systems require high availability, and high
fault tolerance such in the new generation of cloud-based
computing platforms. By replicating each shard, in case a
replica fails down, another replica can replace it. Then, the
system becomes more failure tolerant. Moreover, a replica
set’s different members have the same documents, while
different shards have different documents (Rao and
Govardhan, 2013) as shown in Figure 1.

2.2 Cloud architecture

Dealing with the considered cloud architecture, we consider
a topology, i.e., composed of several geographical
Data Centres (DCs). Let DC a set of data centres such as
DC = {DC1, DC2,..., DCn}, linked together through a high NB.
Each data centre Dci contains a set N of m nodes realised as
Virtual Machines (VMs) with N = {Ni1, Ni2,... Nim}, as shown

in Figure 3. Each node resides on physical hosts and has
specific characteristics related to computing, storage and
memory capacities, and network connectivity in order to
achieve the execution of submitted queries. This leads to a
system topology with two levels: DCs and nodes that host data.
DCs and nodes are interconnected via hierarchy network
bandwidths. DCs are connected via the internet with a low NB
when the links between nodes across Dci have moderately
higher NB compared to the first level.

3 Proposed data replication strategy

An existing data replication mechanism is already supported
by MongoDB. It allows to having an automatic failover and
loading balance while the main purpose is to obtain a high
fault tolerance in case of a primary (master) node crash. In this
paper, we propose a novel MongoDB data replication strategy
in order to obtain better performance while maximising the
provider profit.

The aim of any data replication strategy is to determine
what data should be replicated, when a replica should be
created/deleted, how many replicas to create and where
to place a new replica (Mokadem and Hameurlain, 2015).
In cloud environments, another issue is considered. A
proposed replication strategy should also be profitable to the
provider while tenant objectives are satisfied. We deal with
all these issues in the next subsections.

3.1 When to replicate

The decision of the replication event depends on the
verification of two conditions: (i) a response time is greater
than a response time threshold and (b) a replication should
be profitable to the provider.

56 K. Tabet et al.

Before the execution of each query Q, we estimate the
response time of Q (RespQ) and compare it with the
response time threshold RespT defined in SLA. In case
RespQ is greater than RespT, some required datasets may be
required to be replicated. As long as the provider is still
estimated to be profitable, replication event is triggered as
shown in the replica decision algorithm (Algorithm 1).

Algorithm 1 Replication decision algorithm

3.1.1 Response time estimation

The provider is based on response time estimation in order
to decide whether to replicate data or not to meet the tenant
requirement.

The parallelisation of tasks is one of the most important
characteristics when using cloud computing. We benefit
from several existing relational database studies, e.g., (Özsu
and Valduriez, 2011; Tos, 2017), to propose a response time
estimation model that is suitable for our proposed strategy.
Estimating a query response time is based on resource
consumption when executing this query. Traditionally, we
distinguish two types of parallelism: intra-operator and
inter-operator parallelism in order to process large amount
of data and to improve performance.

In this paper, we focus on response time estimation for a
query that have no dependent operations. In fact, most of
NoSQL systems do not use the join operator. Precisely,
classical MongoDB search queries are without joins. In
consequence, we focus on the intra-operator parallelism that
consists in the parallel execution of several operators
executed on several cloud sites. Then, the result consists in
the combination of the generated results from each site.
Recall also that we are not discussing here how the sharding is
done in MongoDB (Özsu and Valduriez, 2011). There may be
response variation between the execution of an operator on
different shards because of individual hardware resources,
memory, CPU etc.

Suppose that a tenant query Q is submitted to a cloud
that contains several data centres, each one containing a
number of nodes. Assume now that Q is delegated to a
given node that should return a result to the tenant.

Q may be executed on several nodes and multiple shards.
Let Q a tenant query that consists of several sub-queries
Q={Q1, Q2,...,Qi,...,Qk} that are executed in parallel on k shards.
Let Qi a sub-query that requires a collection Cn. Suppose that
the collection Cn is splitted into l chunks as Cn{Cn,1 Cn, 2,..., Cn, l},
with replicas on j sites. In this case, we refer to this sub-query
by Qj

i,k.

The estimated response time of the submitted query is
calculated as the sum of: (i) the longest estimated time it takes
for Q Qj

i,k, (ii) transfer time TTr for transferring data between
shards. The intermediate results are transferred from all the
concerned shards to a final destination and (iii) produce time

Tpr for producing the results, e.g., an union operator is applied
for grouping horizontally fragmented collections, and outputs,
e.g., storing the results. The response time for the execution
of the query RespQ is shown in the following equation (21):

 ,
j

i k Tr PrRespQ Max k Resp Q T T (1)

In order to calculate the response time of the operator, i.e.,

executed on each shard in parallel ,
j

i k
Resp Q , it is

necessary to evaluate the amount of time contributed
by computing resources, including CPU, disk I/O and
communication times as shown in the following equation:

/
, , ,

,

j CPU j I O j

i k i k i k

Com j

i k

Resp Q Max T Q T Q

T Q

 (2)

Estimated CPU time: The time related to CPU depends on
how much time is spent when processing an operator, i.e.,
view as a number machine instructions executed on different
shards for a unit amount of data. The estimation of a CPU
time for the sub-query Qj

i,k is depicted in equation (3).

 , *# * 1CPU j CPU

i kT Q T Inst a (3)

with TCPU, is a time of a CPU instruction, and a >0 a
weighting factor, including CPU hardware capabilities, e.g.,
the processing rate and caching capabilities on a node that
influences query engine performance.

Estimated input / output time: Q may require document dl

from a local node Nip (1i m, 1p n) and/or from a number
r’ of remote document dr distributed on remote nodes (dr may
constitute intermediate results). Let Sdl the size of total local
documents (in bytes) required on Nip, Sdr the size of remote
documents (remote node) required for the Q processing
(in bytes), IOr and IOip the average I/O disk throughputs on a
remote node and Nip, respectively (in bytes/s) including
randomly and sequentially access to a page. Hence, the
estimated I/O cost of Qj

i,k (in sec) on Nip that require local
documents and n remote documents is given by:

 /
, 1

/ /
nI O j

i k r r l ipr
T Q Sd IO Sd IO

 (4)

Estimated communication time: When a MongoDB query
can require remote documents, the communication costs
should be taken into consideration. This represents the time
spent when transferring documents between nodes. We need
to estimate the migration time of remote documents dr into
the local node. Let NBip the average NB to Nip (in bytes/s).
The estimation of a transfer time for Qj

i,k that requires n

remote documents dr is depicted in equation (5).

 , 1
/

nj

Com i k r ipr
T Q sd NB

 (5)

 A data replication strategy for document-oriented NoSQL systems 57

3.1.2 Provider profit estimation

Most of existing replication strategies in the cloud aim to
achieve better performance without considering the provider
profit (Tos et al., 2016). In our strategy, replication of a
collection is considered only if a provider has an economic
profit. In this context, we need to estimate both revenues and
expenditures of the provider when executing Q that deals with
data replication. From the provider point of view, the profit for
executing Q (ProfitQ) is estimated as shown in equation (6).

Q QProfitq Revenues Expenses (6)

All providers aim to maximise revenues paid by tenants.
Usually, the purpose of any cloud provider is to obtain
much more gain, i.e., profit. This justifies the parallel query
execution. Also, expenditures of the provider must be
minimised. But in case of an SLA breach, the provider pays
a penalty to the tenant. Hence, an interesting challenge
consists to avoid the penalty cost paid by the provider to the
tenant for not satisfying a given SLO. Then, the profitability
of cloud providers is based on the minimisation of expenses
caused by the agreements violation.

Revenue estimation: A tenant is not billed for the number of
replicas required when its query is executed, i.e., this process is
transparent for the tenant. However, a tenant has to periodically
pay the provider for the computing time, operational cost and
resources allocated when processing its query.

As proposed in Tos (2017), a per query revenue
estimation depends on the maximum query arrival rate
Max_AR and the duration of the Billing Period (BP),
already specified in the SLA. It also depends on the amount
of rent (Rent) that tenant pays to the cloud provider for the
services acquired during a BP.

Expenditures estimation: Evaluating a query Q generates
operational costs that are impacted by different parameters. Let
Cost_t be a cost by unit of time u for using a node allocated to
the Q evaluation (Sousa and Machado, 2012), T_Q the
estimated total time needed to evaluate Q, Nodes_Nber the
number of the required nodes when evaluating Q during u,
Netw_cost the cost of the NB usage including data migration
from one node to another when creating a replica, Stor_cost
the cost required to store replicas in disks. On the other hand,
the provider pays a penalty to the tenant in case of an SLA
breach. Hence, provider expenditures should include these
penalties. In formula (7), the penalties paid from the provider to
this tenant when one/several SLOi is/are not satisfied is also
considered (Tos et al., 2017). The estimation of the provider
expenditures when evaluating Q (ExpenseQ) is shown in
formula (7).

 _ _ * _

_ _

Nodes Nber

QExpense I T Q Cost t

Netw cost Stor cost penalties

 (7)

3.2 What data should be replicated?

In case we found that an estimated response time of Q (RespQ)
is greater than RespT, we have to select data that should be
concerned by the replication. In the proposed strategy, we
based on the access frequency of each dataset during a period

of time, from the arrival time to actual time. This consists to
select the dataset that has the highest popularity degree.
According to Mansouri and Asadi (2014), the access frequency
of each file is analysed by considering the number of times the
file was accessed during a given time interval. Here, the file
with a greater value of Access Frequency is selected as the
popular file. The Popularity Degree (PD) of a dataset d is to be
calculated using formula (8) (Sun et al., 2012).

 , 1 ,*p

i s

t

d k i i i pt t
PD an t t w t t

 (8)

when ts, tp, present respectively the start time and the
present tim, ank(ti, ti+1) the number of access to d during the
interval [ti, ti+1] and w(ti, tp) a time-based forgetting function
(w) with values within the interval [0, 1]. It is used to
calculate the PD of a block of data at the present time tp
basing on access frequency at the start time ts. When
analysing the data popularity, only the popular dataset is
replicated. We only replicate data that popularity exceeds
PDT, with the PDT the PD threshold agreed on SLA.
Therefore, it is not necessary to create replicas for all
datasets, especially for less accessed files.

Algorithm 2 Selection of a dataset concerned by replication

The second criterion that we based on is the node workload

Load. We consider the replication of data situated on
overload nodes. Besides some particular data are accessed
much more frequently than others, the load on nodes that
hosts data will be augmented which can affect the system
performance. To overcome this problem, we select data
situated on an overload node and then, we place them in
another node that is not overloaded. A workload of a
particular node presents the amount of work, i.e., required to
do. The definition of a node being overloaded can be given
as follows: for each node Nip, we can have its load denoted
as Load(Nip), that depends on both computing and network
capacities of Nip. In case we found that Load(Nip) is bigger
than LoadT, we declare that the current node Nip is
overloaded. LoadT is the threshold load agreed in SLA as
a result, we replicate sets of frequently used data in this
node in order to decrease the workload of Nip as shown in
Algorithm 2.

3.3 Where to place new replicas

When the estimated response time for a query, submitted on

Nij DCi, is greater than RespT, we select data to be replicated
such as RespQ < RespT. For this aim, we need to find the

58 K. Tabet et al.

appropriate node to hold the new replica as shown in
Algorithm 3. We profit from the NB level locality to place
replicas in nodes that have a good NB with Nij. In consequence,
the search of the replica placement node NFound should be
done in the current DC. The selected node should also have
enough storage space and not overloaded. This constitutes the
first condition. The second condition consists in the fact that
the provider should also have a profit when replicating data on
this node. The profit of the provider is checked before
executing a query that uses the concerned replica. Finally,
if there is a real profit, the new replica is really placed on

NFound.

Algorithm 3 Replica placement algorithm

If one of these two conditions is not satisfied for all nodes
on the current DC, the search is done in other DCs so that
we find the appropriate node. Firstly, we search the DC that
has the best bandwidth to the DC that holds the dataset to be
replicated. If the response time objective is not satisfied, the
search is applied on the DC that offers the best storage
prices. Of course, the searched node should have the storage
possibility to hold a new replica and it should not be
overloaded, i.e., the load should be less than LoadT.

3.4 Replica number adjustment

Cloud providers aim to satisfy the tenant requirements while
maximising its benefits. For this aim, it should minimise
expenditures when executing the tenant queries. We consider
an elastic resource management that consists to remove all

unrequired resources, i.e., replicas that are not required should
be removed. This reduces the provider expenditures and then,
increases the provider profit.

Let Q a submitted tenant query in DCi. For each node
Nij, we save the history of data (replicas) access. When the
estimated RT on Nip, is significantly slower than RespT, i.e.,
RespQip<<RespT, we estimate the popularity degree of each
chunk of data, e.g., a replica Ri. We select replicas that
have PD lower than PDT. Then, we delete it to gain more
storage space as shown in the replica deletion algorithm
(Algorithm 4).

Algorithm 4 Replica deletion algorithm

4 Performance evaluation

4.1. Simulation environment

In order to evaluate the impact of our proposed replication
model on the performance of MongoDB, we used the Yahoo
Cloud Serving Benchmark (YCSB), i.e., an open source
development tool for evaluating the performance of different
cloud data stores including Nosql systems, e.g., MongoDB
(Abubakar et al., 2014).

Table 1 Machine specifications and settings

Setting Value

OS Ubuntu 16.04 LTS

Word length 64-bits

RAM 8GB

Hard disk 1TB

CPU speed 1.70GHz

YCSB version 0.5.0

Core 5

First, we evaluate and explore the performance of MongoDB
when using the already existing replication mechanism. Then,
we apply our proposed replication strategy in order to compare
the obtained results. This evaluation is done in a single tenant
environment, where its specifications and settings are indicated
in Table 1.

4.2 Evaluation of existing MongoDB data replication

strategy with different scenarios

For benchmarking purposes, we have to define a set of
workloads that are used on MongoDB. In the context of YCSB,

 A data replication strategy for document-oriented NoSQL systems 59

a workload contains a set of core workloads that define a basic
benchmark for cloud systems. In our experiments, we used six
different workloads, each one consists of 1,000 operations
on 1KB records (10 fields, 100bytes each with default key)
already loaded into a database. Table 2 shows the description
of the tested workloads.

Table 2 Workloads description

Workload Operations

A 50% Read, 50% Write

B 95% Read, 5% Write

C 100% Read

D 95% Read, 5% insert

E 95% Scan, 5% insert

F 50% Read, 50% RMW

Two metrics are measured: throughputs (in operations/s)
and total execution time (in ms). Besides the throughput can
be defined as a measurement that is used to determine the
performance of a database system, it presents the amount of
transactions produced over time during a test. On the other
hand, the response time is the amount of time from the
moment that a tenant sends a query until the application
indicates that the query has completed with all results
(http://searchnetworking.techtarget.com).

Figure 2 represents the obtained results when experimenting
with each workload described in Table 2. We remark that the
performance of MongoDB is more efficient when executing
read only operations (workload C). This strengthens our choice
of applying our strategy with read only operations, especially
since the aim is to improve performances through data
replication. Hence, we evaluate the proposed replication
strategy when dealing with read only operations. This is why
our strategy is proposed for OLAP applications.

Figure 2 Query execution results under different scenarios

4.3 Result analysis of the proposed strategy

Our main aim is to show that the proposed strategy improves
the system performance while the provider profit is taken
into account. We used Mongo java API to interact with
MongoDB. Then, we added.jar files to netbeans IDE project
(version 8.0.2) to have a java Mongo connection. After the

implementation of the proposed replication strategy, first
experiments consist to submit parallel read queries with
several simulated workloads. We note the obtained execution
time with the reading of 10, 100, 1,000, 10,000, 100,000
and 1,000,000 records in a collection. Recall that with the
proposed strategy, the replication event is triggered only if
the estimated response time is bigger than a response time
threshold. We specified a response time threshold as 5,500ms
for each query. Then, the replication should be profitable for
the provider. Throughout the following experiments, we deal
with two important metrics: (i) the response time and (ii) the
number of replications. Recall that the response time is the
amount of time from the moment that a tenant sends a query
until the production of the first results (Özsu and Valduriez,
2011).

Figure 3 Impact of the proposed strategy on MongoDB
performances

Figure 3 shows the variation of the response time with the
two compared replication strategies while varying the
workload. With a reduced number of queries, a slightly
more important number of replicas are created by the
existing replication strategy in MongoDB. But in contrast,
the compared strategy doesn’t take into consideration the
profits of the provider. Fewer replications are required with
our strategy since the response time is inferior to the
response time threshold. Then, there is a marked disparity
when the workload increases. Gradually, when we have
more loads, subsequently more replications occur with our
strategy in order to avoid the SLA breach. This is due
to the fact that a replication is triggered each time the
estimated response time is greater than a response time
threshold. This responds to the aim of cloud providers. In
fact, the provider profit should be maximised through the
minimisation of SLA violation while the SLO response time
is satisfied.

Figure 4 shows the response time values obtained when
experimenting with the two data replication strategies. With
a small number of queries, we obtained a similar response
time with both strategies. The response time of the proposed
strategy is better when dealing with more than 100 parallel
read queries. With a high load, it is clear that our replication
strategy produces less important response times. Response
time values of the proposed strategy should be inferior to
the response time threshold. Otherwise, a data replication is

60 K. Tabet et al.

triggered. This explains why we have a more important
replications with the proposed strategy. Hence, we have better
response time values with the proposed strategy. On the other
hand, each time the compared replication strategy exceeds
the response time threshold we have a SLA violation. In
consequence, the provider should pay a penalty to the tenant
when there is no penalty to pay with the proposed strategy. In
consequence, the provider profit is maximised.

Furthermore, an elastic replica management is considered.
The proposed strategy avoids unnecessary replications by
removing replicas when these replicas are not required. This
decreases both the storage and bandwidth consumptions while
the already existing replication in MongoDB consumes more
resources, i.e., more replicas.

Figure 4 Number of replications

5 Related work

In the existing MongoDB balance algorithm, data are splitted
and distributed unevenly among different shards. However,
data distribution will directly affect the system performance
(Hamrouni et al., 2015). In order to solve this problem, the
authors in Liu et al. (2012) propose an improved algorithm
named Frequency of Data Operation (FODO) that takes into
consideration the load of servers and the frequency of data
operations. The proposed algorithm can balance the data
among shards, which improves the cluster’s operations
(read and write) performances. Gu et al. (2015) analyse
different existing mechanisms of replication already used in
MongoDB. The authors gave a profound explanation and
description of the two used models of replication: Master/
slave and replica-set models. An interesting study (Lima
et al., 2016) has been conducted to evaluate the impact of
biological data replication on MongoDB and Cassandra.
Some setting in the cluster and replication factors can
certainly affect the results. Results showed an improvement
in the data availability, but a loss in system performance and
the impact of the replication factor on the execution time was
higher. Haughian et al. (2016) evaluate and examined
the impact on performance when using or not the replication

under different levels of workloads and consistency. They
experimented with MongoDB and Cassandra NoSQL data
stores. Using benchmarking experiment’s results, they affirm
that replication and consistency have a direct impact on system
performance. Tauro et al. (2013) present a comprehensive
analysis of different existing NoSQL data stores, including
MongoDB, and their features. Basing on the data model,
querying, and replication model, this research provides
knowledge for tenants to choose the appropriate NoSQL
database.

When analysing different existing propositions that deal
with replication mechanisms in MongoDB, we remark that
most of them focus their attention on evaluating and
benchmarking replication. Further researches gave a
performance comparison between MongoDB and other popular
NoSQL systems, as well as relational database management
systems. However, no one of them draw attention to the replica
management in MongoDB when used as the back-end by a
cloud service provider. Furthermore, they neglect the provider
profit. In this paper, we dealt with replica management in
MongoDB in order to ensure both system performance and
profitability of the cloud provider.

6 Conclusion

We propose a new data replication strategy for MongoDB,
a document oriented NoSQL database Engine. The main aim
of the proposed strategy is to satisfy the performance
requirement for the tenant while the provider profit is taken
into account. The replication is triggered only if the estimated
response time of a submitted tenant query Q is greater than a
response time threshold defined in the SLA. Then, the
replication must be profitable for the provider when a
replication is considered. We based on the estimation of:
(i) the response time of Q before its execution, and (ii) both
revenues and expenditures of the provider when considering
data replication. Then, the most popular data is replicated on
the less loaded node. Furthermore, existing replicas that have
the lowest popularity are dynamically removed in order to
decrease the resource consumption which increases the
provider profit. We evaluated the proposed strategy through
an experimental evaluation. We compared the actual existing
replication strategy in MongoDB with our proposed strategy
in term of response time and number of triggered replication.
The obtained results confirm that the proposed strategy
provides better results when considering simultaneously
the tenant response time satisfaction and the provider
economic profitability. As a future work, we intend to extend
the proposed replica creation decision process by accepting to
lose some profit when the provider executes queries of an
important tenant within a multi-tenant environment. This
should be advantageous for the provider within a long period
with a condition that the provider will make again a profit
with the same tenant afterwards. Also, we plan to implement
the proposed strategy in a real cloud environment.

 A data replication strategy for document-oriented NoSQL systems 61

References

Abubakar, Y., Adeyi, T.S. and Auta, I.G. (2014) ‘Performance
evaluation of NoSQL systems using YCSB in a resource
austere environment’, Performance Evaluation, Vol. 7, No. 8,
doi:10.5120/ijais14-451229.

Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.,
Konwinski, A., Lee, G., Patterson, D, Rabkin, A., Stoica, L.
and Zaharia, M. (2010) ‘A view of cloud computing’,
Communication of the ACM, Vol. 53, No. 4, pp.50–58.

Benoit, A., Rehn-Sonigo, V. and Robert, Y. (2008) ‘Replica
placement and access policies in tree networks’, IEEE

Transactions on Parallel and Distributed Systems, Vol. 19,
No. 12, pp.1614–1627.

Chodorow, K. (2013) MongoDB: The Definitive Guide: Powerful

and Scalable Data Storage, O’Reilly Media, Inc., O’Reilly.

Goel, S. and Buyya, R. (2007) ‘Data replication strategies in wide-area
distributed systems’, Proceedings of the Enterprise Service

Computing: From Concept to Deployment, pp.211–241.

Gu, Y., Wang, X., Shen, S., Ji, S. and Wang, J. (2015) ‘Analysis of
data replication mechanism in NoSQL database MongoDB’,
Proceedings of the IEEE International Conference on

Consumer Electronics-Taiwan, pp.66–67.

Hameurlain, A. and Mokadem, R. (2017) SPECIAL ISSUE,
Elastic Data Management in Cloud Systems, pp.261–262.

Hamrouni, T., Hamdeni, C., Ben Charrada, F. (2015) ‘Impact
of the distribution quality of file replicas on
replication strategies’, Journal Networking Computing, Vol. 56,
pp.60–76.

Haughian, G., Osman, R. and Knottenbelt, W.J. (2016)
‘Benchmarking replication in cassandra and mongodb nosql
datastores’, Proceedings of the International Conference on

Database and Expert Systems Applications, International
Publishing, Springer, pp.152–166.

Liu, Y., Wang, Y. and Jin, Y. (2012) ‘Research on the
improvement of MongoDB Auto-Sharding in cloud
environment’, Proceedings of the 7th IEEE International

Conference on Computer Science & Education, pp.851–854.

Lima, I., Oliveira, M., Kieckbusch, D., Holanda, M., Walter, M.E.
M., Araújo, A. and Lifschitz, S. (2016) ‘An evaluation of data
replication for bioinformatics workflows on NoSQL systems’,
Proceedings of the IEEE International Conference on

Bioinformatics and Biomedicine, pp.896–901.

Loukopoulos, T., Lampsas, P. and Ahmad, I. (2005) ‘Continuous
replica placement schemes in distributed systems’,
Proceedings of the 19th annual international conference on

Supercomputing, pp.284–292.

Mansouri, N. and Asadi, A. (2014) ‘Weighted data
replication strategy for data grid considering economic
approach’, International Journal of Computer Electrical

Automation Control Information Engineering, Vol. 8,
pp.1336–1345.

Mansouri, Y., Azad, S.T. and Chamkori, A. (2014) ‘Minimizing
cost of K-replica in hierarchical data grid environment’,
Proceedings of the IEEE 28th International Conference

on Advanced Information Networking and Applications,
pp.1073–1080.

Membrey, P., Plugge, E. and Hawkins, T. (2010) The Definitive

Guide to MongoDB: the noSQL Database for Cloud and

Desktop Computing, Springer.

Mohamed, H.H.H. (2015) A New Auditing Mechanism for Open

Source NoSQL Database a Case Study on Open Source

MongoDB Database, PhD Dissertation, Universiti Utara Malaysia.

Mokadem, R. and Hameurlain, A. (2015) ‘Data replication
strategies with performance objective in data grid systems:
a survey’, International Journal of Grid and Utility

Computing, Vol. 6, No. 1, pp.30–46.

Özsu, M.T. and Valduriez, P. (2011) Principles of Distributed

Database Systems, Science & Business Media, Springer.

Park, S.M., Kim, J.H., Ko, Y.B. and Yoon, W.S. (2003, December)
‘Dynamic data grid replication strategy based on Internet
hierarchy’, Proceedings of the International Conference on Grid

and Cooperative Computing, Springer, Berlin, Heidelberg,
pp.838–846.

Perez, J.M., García-Carballeira, F., Carretero, J., Calderón, A. and
Fernández, J. (2010) ‘Branch replication scheme: a new
model for data replication in large scale data grids’, Future

Generation Computer Systems, Vol. 26, No. 1, pp.12–20.

Rao, B.R.M. and Govardhan, A. (2013) ‘Sharded Parallel Mapreduce
in Mongodb for online aggregation’, International Journal

of Engineering and Innovative Technology, Vol. 3, No. 4,
pp.119–127.

Sakr, S. and Liu, A. (2012) ‘Sla-based and consumer-centric
dynamic provisioning for cloud databases’, Proceedings of

the IEEE 5th International Conference on Cloud Computing

(CLOUD), pp.360–367.

Stantchev, V. and Schröpfer, C. (2009) ‘Negotiating and enforcing
QoS and SLAS in grid and cloud computing’, Advances in

Grid and Pervasive Computing, pp.25–35.

Sousa, F.R. and Machado, J.C. (2012) ‘Towards elastic multi-tenant
database replication with quality of service’, Proceedings of the

IEEE/ACM 5th International Conference on Utility and Cloud

Computing, IEEE Computer Society, pp.168–75.

Sun, D.W., Chang, G.R., Gao, S., Jin, L.Z. and Wang, X.W. (2012)
‘Modeling a dynamic data replication strategy to increase system
availability in cloud computing environments’, Journal of

Computer Science and Technology, Vol. 27, No. 2, pp.256–272.

Tabet, K., Mokadem, R., Laouar, M.R. and Eom, S. (2017) ‘Data
replication in cloud systems: a survey’, International Journal

of Information Systems and Social Change, Vol. 8, No. 3,
pp.17–33.

Tauro, C.J., Patil, B.R. and Prashanth, K.R. (2013) ‘A comparative
analysis of different nosql databases on data model, query model
and replication model’, Proceedings of the International

Conference on Emerging Research in Computing, information,

Communication and Applications, Elsevier Publications,
pp.14–25.

Tos, U., Mokadem, R., Hameurlain, A., Ayav, T. and Bora, S. (2016)
‘A performance and profit oriented data replication strategy for
cloud systems’, Proceedings of the IEEE Conferences Ubiquitous

Intelligence & Computing, Advanced and Trusted Computing,

Scalable Computing and Communications, Cloud and Big Data

Computing, Internet of People, and Smart World Congress

(UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld), pp.780–787.

Tos, U., Mokadem, R., Hameurlain, A., Ayav, T. and Bora, S. (2017)
‘Ensuring performance and provider profit through data
replication in cloud systems’, Cluster Computing, pp.1–14.

Tos, U. (2017) Réplication de Données Dans les Systèmes de Gestion

de Données à Grande échelle, PhD Dissertation, Université de
Toulouse, Université Toulouse III-Paul Sabatier.

62 K. Tabet et al.

Tu, M., Li, P., Xiao, L., Yen, I.L. and Bastani, F.B. (2006) ‘Replica
placement algorithms for mobile transaction systems’, IEEE

Transactions on Knowledge and Data Engineering, Vol. 18,
No. 7, pp.954–970.

Wei, Q., Veeravalli, B., Gong, B., Zeng, L. and Feng, D. (2010) ‘CDRM:
a cost-effective dynamic replication management scheme for
cloud storage cluster’, Proceedings of the IEEE International

Conference on Cluster Computing (CLUSTER), pp.188–196.

Xhafa, F., Kolici, V., Potlog, A.D., Spaho, E., Barolli, L. and
Takizawa, M. (2012) ‘Data replication in P2P collaborative
systems’, Proceedings of the IEEE 7th International Conference

on P2P, Parallel, Grid, Cloud and Internet Computing

(3PGCIC), pp.49–57.

Xue, M., Shen, J. and Guo, X. (2015) ‘Replica placement in cloud
storage based on minimal blocking probability’, Proceedings

of (CENet’15), Shanghai, China.

