
The Ivy C++ and java library guide

CENA NT02-819

Yannick Jestin
jestin@cena.fr

This document is a programmer’s guide that describes how to use the Ivy Java library to connect
applications to an Ivy bus. This guide describes version 1.2 of the library. This document itself
is part of the java package, available on the Ivy web site (http://www.tls.cena.fr/products/ivy/).

1. Foreword

This document was written in SGML according to the DocBook DtD, so as to be able to generate PDF
and html output. However, the authors have not yet mastered the intricacies of SGML, the DocBook
DtD, the DocBook Stylesheets and the related tools, which have achieved the glorious feat of being far
more complex than LaTeX and Microsoft Word combined together. This explains why this document, in
addition to being incomplete, is so ugly. We’ll try and improve it.

The Windows ivy-c++ port has been written with the same API. Most of the documentation for the Ivy
java library applies to the windows c++ library. There is a section dedicated to the description of the
intrinsics. There is also a unix port of this library, which is a C++ wrapper on top of the C library. There
is also a section dedicated to this port.

2. What is Ivy?

Ivy is a software bus designed at CENA (http://www.cena.fr/) (France). A software bus is a system that
allows software applications to exchange information with the illusion of broadcasting that information,
selection being performed by the receiving applications. Using a software bus is very similar to dealing
with events in a graphical toolkit: on one side, messages are emitted without caring about who will
handle them, and on the other side, one decide to handle the messages that have a certain type or follow a
certain pattern. Software buses are mainly aimed at facilitating the rapid development of new agents, and
at managing a dynamic collection of agents on the bus: agents show up, emit messages and receive some,
then leave the bus without blocking the others.

1

NT02-819 © CENA

Ivy is implemented as a collection of libaries for several languages and platforms. If you want to read
more about the principles Ivy before reading this guide of the java library, please refer toThe Ivy sofware
bus: a white paper. If you want more details about the internals of Ivy, have a look atThe Ivy
architecture and protocol. And finally, if you are more interested in other languages, refer to other guides
such asThe Ivy Perl library guide, or The Ivy C library guide. All those documents should be available
from the Ivy Web site (http://www.tls.cena.fr/products/ivy/).

3. The Ivy java library

3.1. What is it?

The Ivy java library (aka ivy-java or fr.dgac.ivy) is a java package that allows you to connect applications
to an Ivy bus. You can use it to write applications in java. You can also use it to integrate any thread-safe
java application. So far, this library has been tested and used on a variety of java virtual machines (from
1.1.7 to 1.4.1), and on a variety of architectures (GNU/Linux, Solaris, Windows NT,XP,2000, MacOSX).

The Ivy java library was originally developed by François-Régis Colin and then by Yannick Jestin at
CENA. It is maintained by a group at CENA (Toulouse, France)

3.2. Getting and installing the Ivy Java library

You can get the latest versions of the Ivy C library from the Ivy web site
(http://www.tls.cena.fr/products/ivy/). It is packaged either as a jar file or as a debian package. We plan
to package it according to different distribution formats, such as .msi (Windows) or .rpm (Redhat and
Mandrake linux).

The package is mainly distributed as a JAR file. In order to use it, either add it in your CLASSPATH, or
put the jar in your $JAVA_HOME/jre/lib/ext/ directory, if you use a java 2 virtual machine. If running
windows, be sure to add it to the right place for runtime (C:\Program Files\JavaSoft\...). The package
contains the documentation, the sources and the class files for the fr.dgac.ivy package.

In order to test the presence of Ivy on your system once installed, run the following command:

$ java fr.dgac.ivy.Probe

If it spawns a line about broadcasting on a strange address, this is OK, it is ready and working. If it
complains about a missing class (java.lang.NoClassDefFoundError), then you have not pointed your
virtual machine to the jar file.

2

NT02-819 © CENA

4. Your first Ivy application

We are going to write a "Hello world translater" for an Ivy bus. The application will subscribe to all
messages starting with "Hello", and re-emit them after translating "Hello" into "Bonjour". In addition,
the application will quit when it receives any message containing exactly "Bye".

4.1. The code

Here is the code of "ivyTranslater.java":

import fr.dgac.ivy.* ;

class ivyTranslater implements IvyMessageListener {

private Ivy bus;

ivyTranslater() {
// initialization
bus = new Ivy("IvyTranslater","Hello le monde",null);
bus.bindMsg("^Hello(.*)",this);
bus.bindMsg("^Bye$",new IvyMessageListener() {

// callback for "Bye" message
public void receive(IvyClient client, String[] args) {System.exit(0);}

});
try {

// starts the bus on the default domain or IVY_DOMAIN property
bus.start(null);

} catch (IvyException ie) {
System.err.println("can’t run the Ivy bus" + ie.getMessage());

}
}

// callback associated to the "Hello" messages"
public void receive(IvyClient client, String[] args) {

bus.sendMsg("Bonjour"+((args.length >0)?args[0]:""));
}

public static void main(String args[]) { new ivyTranslater(); }
}

4.2. Compiling it

You should be able to compile the application with the following command (if the ivy-java jar is in your
development classpath):

$ javac ivyTranslater.java

3

NT02-819 © CENA

$

4.3. Testing

We are going to test our application withfr.dgac.ivy.Probe. In a terminal window, launchivyTranslater .

$ java ivyTranslater

Then in another terminal window, launchjava fr.dgac.ivy.Probe ’(.*)’ . You are then ready to start. Type
"Hello Paul", and you should get "Bonjour Paul". Type "Bye", and your application should quit:

$ java fr.dgac.ivy.Probe ’(.*)’
you want to subscribe to (.*)
broadcasting on 127.255.255.255:2010
IvyTranslater connected
IvyTranslater subscribes to ^Bye$
IvyTranslater subscribes to ^Hello(.*)
IvyTranslater sent ’Hello le monde’
Hello Paul
- > Sent to 1 peers
IvyTranslater sent ’Bonjour Paul’
Bye
- > Sent to 1 peers
IvyTranslater disconnected
<Ctrl-D >

$

5. Basic functions

5.1. Initialization and Ivy threads

Initializing a java Ivy agent is a two step process. First of all, you must create anfr.dgac.ivy.Ivy

object. Once this object is created, you can add subscriptions to Ivy events, be it messaged, arrival or
departure of other agents, etc, but your agent is still not connected. In order to connect, you should call
thestart() method on your Ivy object. This will run two threads that will remain active until you call
thestop() method on your Ivy object. Once thestart() method has been called, your agent is ready
to handle messages on the bus !

Here are more details on those functions:

fr.dgac.ivy.Ivy(String name,String message, IvyApplicationListener appcb)

4

NT02-819 © CENA

This constructor readies the structures for the software bus connexion. It is possible to have different
busses at the same time in an application, be it on the same bus or on different ivy busses. Thename is
the name of the application on the bus, and will by transmitted to other application, and possibly be used
by them. Themessage is the first message that will be sent to other applications, with a slightly
different broadcasting scheme than the normal one (seeThe Ivy architecture and procotoldocument for
more information). Ifmessage is null, nothing will be sent.appcb , if non null, is an object
implementing the IvyApplicationListener interface. Its different methods will be called upon arrival or
departure of an agent on the bus, when your application itself will leave the bus, or when a direct
message will be sent to your application.

public void start(String domainbus) throws IvyException

This method connects the Ivy bus to a domain or list of domains.domainbus is a string of the form
10.0.0:1234, it is similar to the netmask without the trailing .255. This will determine the meeting point
of the different applications. Right now, this is done with an UDP broadcast. Beware of routing problems
! You can also use a comma separated list of domains, for instance "10.0.0.1234,192.168:3456". If the
domain isnull , the API will check for the propertyIVY_DOMAIN, if not present, it will use the default
bus, which is 127.255.255.255:2010, and requires a loopback interface to be active on your system. This
method will spawn two threads, one listening to broadcasts from other agents, and one listening on the
service UDP socket, where remote agent will come and connect. If an IvyException is thrown, your
application is not able to talk to the domain bus.

public void stop()

This methods stops the threads, closes the sockets and performs some clean-up. You can reconnect to the
bus by callingstart() once again.

5.2. Emitting messages

Emitting a message is much like writing a string on a output stream. The message will be sent if you are
connected to the bus and somebody is interested in its content.

public int sendMsg(String message)

Will send each remote agent the substring in case there is a regexp matching. The int result is the number
of messages actually sent. The main issue here is that the sender ivy agent is the one who takes care of
the regexp matching, so that only useful information are conveyed on the network.

5.3. Subscribing to messages

Subscribing to messages consists in binding a callback function to a message pattern. Patterns are
described by regular expressions with captures. When a message matching the regular expression is
detected on the bus, the callback function is called. The captures (ie the bits of the message that match
the parts of regular expression delimited by brackets) are passed to the callback function much like

5

NT02-819 © CENA

options are passed to main. Use thebindMsg() method to bind a callback to a pattern, and the
unbindMsg method to delete the binding.

public int bindMsg(String regex, IvyMessageListener callback);
public void unBindMsg(int id);

Theregex follows the gnu.regexp regular expression syntax. Grouping is done with parenthesis. The
callback is an object implementing the IvyMessageListener interface, with thereceive method. The
thread listening on the connexion with the sending agent will execute the callback.

6. Advanced functions

6.1. fr.dgac.ivy.Probe utility

fr.dgac.ivy.Probe is your swiss army knife as an Ivy java developper. Use it to try your regular
expressions, to check the installation of the system, to log the messages, etc.

The command line options (available with the --help switch) are the following:

• -b allows you to specify the ivy bus. This overrides the -DIVY_BUS java property. The default value
is 127.255.255.255:2010.

• -n NAME allows you to specify the name of this probe agent on the bus. It defaults to JPROBE, but it
might be difficult to differenciate which jprobe sent which message with a handful of agents with the
same name

• -q allows you to spawn a silent jprobe, with no terminal output.

• -d allows you to use JPROBE on debug mode. It is the same as setting the VY_DEBUG property (
java -DIVY_DEBUG fr.dgac.ivy.Probe is the same as java fr.dgac.ivy.Probe -d)

• -h dumps the command line options help.

The run time commands are preceded by a single dot (.) at the beginning of the line. Issue ".help" at the
prompt (without the double quotes) to have the list of availables comands. If the lines does not begin
with a dot, jprobe tries to send the message to the other agents, if their subscriptions allows it. The dot
commands are the following

• .die CLIENTNAME issues an ivy die command, presumably forcing the first agent with this name to
leave the bus

• .bye (or .quit) forces the JPROBE application to exit. This is the same as issing an end of file character
on a single input line (^D).

• .direct client id message sends the direct message to the remote client, using the numeric id

• .list gives the list of clients seen on the ivy bus

6

NT02-819 © CENA

• .ping issues a ping request. This is only available for ivy java clients so far, and allows you to try and
send a packet to a remote agent, in order to check the connectivity.

6.2. fr.dgac.ivy.IvyDaemon utility

As the launching and quitting of an ivy bus is a bit slow, it is not convenient to spawn an Ivy client each
time we want to send a simple message. To do so, we can use the IvyDaemon, which is a TCP daemon
sitting and waiting on the port 3456, and also connected on the default bus. Each time a remote
application connects to this port, every line read until EOF will be forwarded on the bus. The standard
port and bus domain can be overriden by command line switches. (java fr.dgac.ivy.IvyDaemon -h).

First, spawn an ivy Damon: $ java fr.dgac.ivy.IvyDaemon

then, within your shell scripts, use a short tcp connexion (for instance netcat) : $ echo "hello world" | nc
-q 0 localhost 3456

The message will be sent on the default Ivy Bus.

6.3. Direct messages

Direct messages is an ivy feature allowing the exchange of information between two ivy clients. It
overrides the subscription mechanism, making the exchange faster (there is no regexp matching, etc).
However, this features breaks the software bus metaphor, and should be replaced with the relevant
bounded regexps, at the cost of a small CPU overhead. The full direct message mechanism in java has
been made available since the ivy-java-1.2.3.

7. Ivy c++ Windows port

The API is very similiar to the java port, that’s why we include this little section within the ivy java
documentation. The author is not familiar with windows programming or C++ programming so that this
documentation might be inaccurate. Here is a sample listing that might be useful:

// ivytest.cpp : Defines the entry point for the console application.
#include <iostream.h >

#include <stdlib.h>

#include "ivy.h"
#include "IvyApplication.h"

static bool TheGrassIsGreenAndTheWindBlows = true;

7

NT02-819 © CENA

class cIvyTranslater : public IvyApplicationCallback
{
public:

cIvyTranslater(void);
protected:
void OnApplicationConnected (IvyApplication *app);
void OnApplicationDisconnected(IvyApplication *app);
void HelloCallback (IvyApplication *app, int argc, const char **argv);
void ByeCallback (IvyApplication *app, int argc, const char **argv);
Ivy *bus;
};

cIvyTranslater::cIvyTranslater(void)
{

// initialization
bus = new Ivy("cIvyTranslater","cIvyTranslater READY",this,FALSE);

int count;
count = bus- >BindMsg("^Hello(.*)", BUS_CALLBACK_OF(cIvyTranslater, HelloCallback));
count = bus- >BindMsg("^Bye$", BUS_CALLBACK_OF(cIvyTranslater, ByeCallback));

bus- >start("127.255.255.255:2010");
}

void cIvyTranslater::HelloCallback(IvyApplication *app, int argc, const char **argv)
{

const char* arg = (argc < 1) ? "" : argv[0];
cout << "cIvyTranslater received msg: Hello’" << arg
<< "’" << endl;

bus- >SendMsg("Bonjour%s!", arg);
}

void cIvyTranslater::ByeCallback(IvyApplication *app, int argc, const char **argv)
{
cout << "cIvyTranslater stops bus" << endl;

if (bus) {
TheGrassIsGreenAndTheWindBlows = false;
bus- >stop();
delete bus; // This statement is never reached! Don’t know why!

}

}

void cIvyTranslater::OnApplicationConnected(IvyApplication *app)
{
cout << "cIvyTranslater is ready to accept messages from "
<< app- >GetName() << endl;
}

void cIvyTranslater::OnApplicationDisconnected(IvyApplication *app)

8

NT02-819 © CENA

{
cout << "cIvyTranslater good buy ’" << app- >GetName()
<< "’" << endl;
}

void main(int argc, char* argv[])
{

cIvyTranslater aIvyTL;

while (TheGrassIsGreenAndTheWindBlows) {
Sleep(2000);
cout << "new cycle..." << endl;

}
cout << "Good buy, world\n";
}

7.1. Win32 API

8. programmer’s style guide

[to be written]

9. Contacting the authors

The Ivy java library is now maintained by Yannick Jestin. For bug reports or comments on the library
itself or about this document, please send him an email at <jestin@cena.fr >. For comments and ideas
about Ivy itself (protocol, applications, etc), please join and use the Ivy mailing list:
<ivy@tls.cena.fr >.

9

