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Joint and group action

⇒ Examples of group action

I Bill and Bob are painting a house together.
I Brazil soccer team can win against Italy soccer team.
I Ann and Mary could have avoided the accident (if they

were more cautious).
I Bill and Bob have the intention to write a paper together,

and they start to write it.
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Logics of joint and group action

I Logics for social software: Coalition Logic (Pauly 2001,
2002)

I Logics for multi-agent systems: Alternating-time Temporal
Logic (Alur and Henzinger, 2002; van der Hoek and
Wooldridge, 2003), Coalition Logic of Propositional Control
(van der Hoek and Wooldridge, 2005)

I Philosophy of action: “Seeing To It That” (Belnap et al.
2001)
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Introduction

Coalition Logic

STIT logic with agents and groups

Towards intentional STIT: from uniform strategies to joint intentions
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Coalition Logic
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Coalition logic (Pauly 2001, 2002)

I Social software: logics for modelling procedures involving
the interactions between multiple agents

I E.g., voting procedure

I It enables to express what a coalition of agents can ensure
by doing a joint action
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Coalition logic (CL): language

I AGT = {1, . . . , n}: a countable set of agents;
I ATM : a countable set of atomic propositions.

8/ 73



Coalition logic (CL): language (cont.)

The language LCL of CL with agents and groups is defined by
the following BNF:

ϕ ::= p | ϕ ∧ ϕ | ¬ϕ | 〈[J ]〉ϕ
where p ranges over ATM and J ⊆ AGT .

⇒ We write 〈[i]〉ϕ instead of 〈[{i}]〉ϕ

I 〈[J ]〉ϕ: the coalition J can ensure ϕ at the next time point
by acting together, whatever the others agents do.

I ∃ a collective choice of J s.t. ∀ next state ϕ holds.
I 〈[∅]〉ϕ: ϕ is necessarily true at the next time point.
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Example: coordinated attack

I Two agents i and j are trying to move an attack against a
common enemy. The enemy will be defeated iff i and j
move a coordinated attack (both i and j attack the enemy).

I i has two actions available: attack and skip (do nothing).
I j has two actions available: attack and skip (do nothing).

In formulas:
〈[{i, j}]〉defeatEnemy ∧ ¬〈[i]〉defeatEnemy ∧ ¬〈[j]〉defeatEnemy
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Effectivity functions

I S: a set of states
I e : 2AGT −→ 22S

: effectivity function
I X ∈ e(J) iff is a set of possible outcomes for which J is

effective (or J can force the world to be in some state of X
at the next step)
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Example: coordinated attack (cont.)

I S = {sDefeat , sUndefeat}
I e(i) = e(j) = {{sDefeat , sUndefeat}}
I e({i, j}) = {{sDefeat , sUndefeat}, {sDefeat}, {sUndefeat}}
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Playable effectivity function

e is playable iff:
1. ∅ 6∈ e(J);
2. S ∈ e(J);
3. S \X 6∈ e(∅) then X ∈ e(AGT )

(AGT -maximality);
4. if X1 ∈ e(J) then X1 ∪X2 ∈ e(J)

(Outcome monotonicity);
5. if J ∩ I = ∅ then if X1 ∈ e(J) and X2 ∈ e(I) then

X1 ∩X2 ∈ e(J ∪ I)
(Superadditivity).

Remark
If e is playable then:

I e is coalition monotonic: if J ⊆ I then e(J) ⊆ e(I)
I e is regular: if X ∈ e(J) then S \X 6∈ e(AGT \ J)

13/ 73



CL models

A CL-model is a tuple M = ((S, E), V ) where:
I S is a set of states;
I E : S −→ (2AGT −→ 22S

) associates an effectivity function
Es to every state s in S;

I V is a valuation function, that is, V : S −→ 2ATM .
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Truth conditions

I Truth conditions for Boolean constructions are entirely
standard.

I M, s |= 〈[J ]〉ϕ iff {s′|M, s′ |= ϕ} ∈ Es(J).

Validity, satisfiability are defined as usual
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A complete axiomatization of CL

(RE) If ϕ ↔ ψ then 〈[J ]〉ϕ ↔ 〈[J ]〉ψ
(M) 〈[J ]〉(ϕ ∧ ψ) → (〈[J ]〉ϕ ∧ 〈[J ]〉ψ)
(⊥) ¬〈[J ]〉⊥
(>) 〈[J ]〉>
(AGT ) ¬〈[∅]〉ϕ → 〈[AGT ]〉¬ϕ

(S) (〈[J ]〉ϕ ∧ 〈[I]〉ψ) → 〈[J ∪ I]〉(ϕ ∧ ψ) if J ∩ I = ∅
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Some CL validities

〈[∅]〉 and 〈[AGT ]〉 are normal modalities

I ` (〈[∅]〉ϕ ∧ 〈[∅]〉ψ) → 〈[∅]〉(ϕ ∧ ψ)
I ` (〈[AGT ]〉ϕ ∧ 〈[AGT ]〉ψ) → 〈[AGT ]〉(ϕ ∧ ψ)
I If ` ϕ then ` 〈[J ]〉ϕ
I proof:

1. ` ϕ Hypothesis
2. ` ϕ ↔ > from 1
3. ` 〈[J ]〉ϕ ↔ 〈[J ]〉> from 2 by Rule RE
4. ` 〈[J ]〉> Axiom >
5. ` 〈[J ]〉ϕ from 3 and 4
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Some CL validities (cont.)

〈[∅]〉 and 〈[AGT ]〉 are inter-definable

I ` 〈[∅]〉ϕ ↔ ¬〈[AGT ]〉¬ϕ

I proof:
1. ` ¬〈[AGT ]〉¬ϕ → 〈[∅]〉ϕ by Axiom AGT
2. ` (〈[∅]〉ϕ ∧ 〈[AGT ]〉¬ϕ) → 〈[AGT ]〉⊥ by Axiom S
3. ` 〈[AGT ]〉⊥ → ⊥ by Axiom ⊥
4. ` (〈[∅]〉ϕ ∧ 〈[AGT ]〉¬ϕ) → ⊥ from 2,3
5. ` 〈[∅]〉ϕ → ¬〈[AGT ]〉¬ϕ from 4

Two disjoint coalitions cannot bring about conflicting effects

I ` (〈[J ]〉ϕ ∧ 〈[I]〉¬ϕ) → ⊥ if I ∩ J = ∅
I proof:

1. ` (〈[J ]〉ϕ ∧ 〈[I]〉¬ϕ) → 〈[J ∪ I]〉⊥ by Axiom S
2. ` 〈[J ∪ I]〉⊥ → ⊥ by Axiom ⊥
3. ` (〈[J ]〉ϕ ∧ 〈[I]〉¬ϕ) →→ ⊥ from 1,2
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STIT logic with agents and
groups
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STIT: the logic of “Seeing to it that”

I Formal philosophy and philosophy of action (Belnap et al.,
2001)

I It makes a difference between doing (seeing to it that) and
being able to do (being able to see to it that)

I what an agent or coalition choose
I what an agent or coalition can choose

I ‘Bringing it about tradition’ (Kanger, 1972; Pörn, 1977):
only doing.
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STIT logic with agents and groups

I Non-standard semantics for STIT in terms of moments and
histories (Belnap et al., 2001; Horty, 2001; Horty & Belnap,
1995).

I It is proved in (Balbiani et al. 2008; Herzig &
Schwarzentruber, 2008) that STIT can be ‘simulated’ in a
standard Kripke semantics.

I We use this for today’s presentation.
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STIT logic with agents and groups (Horty, 2001)

I AGT = {1, . . . , n}: a countable set of agents;
I ATM : a countable set of atomic propositions;
I 2AGT∗ = 2AGT \ ∅: the set of non-empty coalitions.
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STIT logic with agents and groups

The language LSTIT of STIT with agents and groups is defined
by the following BNF:

ϕ ::= p | ϕ ∧ ϕ | ¬ϕ | [J ]ϕ | ¤ϕ

where p ranges over ATM and J over 2AGT∗.

⇒ [J ]ϕ ≈ “J sees to it that ϕ no matter what the other agents in
AGT \ J do”.
⇒ ¤ϕ ≈ “ϕ is necessarily true” (historic necessity).
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Further notations

〈J〉ϕ def= ¬[J ]¬ϕ

♦ϕ
def= ¬¤¬ϕ

I We write [i] instead of [{i}];
I ♦ϕ ≈ “ϕ is possibly true”;
I ♦[J ]ϕ ≈ “J can see to it that ϕ whatever the other agents

in AGT \ J do”.
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Example: two agents AGT = {1, 2} taking care of a
plant

Each agent can choose to water the plant or to do nothing
I If both of them water the plant then the plant will die.
I If both of them do nothing then the plant will die.
I If one waters the plant and the other does nothing then the

plant will survive.
I 1 decides to water the plant and 2 decides to do nothing.

⇒ In formulas:
♦[{1, 2}]alive ∧ ♦[{1, 2}]¬alive ∧ ¬♦[1]alive ∧ ¬♦[2]alive∧
[{1, 2}]alive ∧ ¬[1]alive ∧ ¬[2]alive
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STIT models

A STIT-model is a tuple M = (W, {RJ}J⊆AGT ,H, V ) where:
I W is a non-empty set of possible worlds or states;
I For all J ∈ 2AGT∗, RJ is an equivalence relation over W :

1. Reflexive: (w, w) ∈ RJ ;
2. Transitive: if (w, v) ∈ RJ and (v, u) ∈ RJ then (w, u) ∈ RJ ;
3. Symmetric: if (w, v) ∈ RJ then (v, w) ∈ RJ .

I H is an equivalence relation over W .
I V is a valuation function, that is, V : W −→ 2ATM .

⇒ RJ(w) = {v ∈ W |(w, v) ∈ RJ} is the set of outcomes of the
action chosen by coalition J at w
⇒ H(w) = {v ∈ W |(w, v) ∈ H} is the set of possible outcomes
at w
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Constraints on STIT models

(OutcomeInc) for all w ∈ W , RJ(w) ⊆ H(w);
(PointWInter) for all w ∈ W , RJ(w) =

⋂
j∈J R{j}(w);

(Indep) for all w ∈ W , for all 〈wj〉j∈AGT ∈ R∅(w)n,⋂
j∈AGT R{j}(wj) 6= ∅;

(AGT -Det) for all w ∈ W , if v ∈ RAGT (w) and u ∈ RAGT (w)
then v = u.
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Constraints on STIT models (cont.)

Suppose AGT = {1, 2}
(OutcomeInc) for all w ∈ W , RJ(w) ⊆ H(w)
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Constraints on STIT models (cont.)

(PointWInter) for all w ∈ W , RJ(w) =
⋂

j∈J R{j}(w)
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Constraints on STIT models (cont.)

(Indep) for all w ∈ W , for all 〈wj〉j∈AGT ∈ R∅(w)n,⋂
j∈AGT R{j}(wj) 6= ∅
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Constraints on STIT models (cont.)

(AGT -Det) for all w ∈ W , if v ∈ RAGT (w) and u ∈ RAGT (w)
then v = u
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Constraints on STIT models (cont.)

Remark
Slightly different from Horty’s formulation. He does not suppose
AGT -determinism.

Remark
Constraints (OutcomeInc) and (PointWInter) imply:
RJ(w) ⊆ RI(w) if I ⊆ J .
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Truth conditions

I Truth conditions for Boolean operators are standard.
I M, w |= [J ]ϕ iff M, v |= ϕ for all v ∈ RJ(w).
I M, w |= ¤ϕ iff M, v |= ϕ for all v ∈ H(w).
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Two agents AGT = {1, 2} taking care of a plant (cont.)
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( w a t e r )

I [{1, 2}]alive is true at w1 and w3.
I ♦[{1, 2}]alive is true at w1, w2, w3, w4.
I ¬♦[1]alive and ¬♦[2]alive are true at w1, w2, w3, w4.
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Some STIT validities

¤ and [J ] are S5 modalities

1. |= ([J ]ϕ ∧ [J ]ψ) → [J ](ϕ ∧ ψ)
2. |= [J ]ϕ → ϕ

3. |= [J ]ϕ → [J ][J ]ϕ
4. |= 〈J〉ϕ → [J ]〈J〉ϕ
5. |= (¤ϕ ∧¤ψ) → ¤(ϕ ∧ ψ)
6. |= ¤ϕ → ϕ

7. |= ¤ϕ → ¤¤ϕ

8. |= ♦ϕ → ¤♦ϕ
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Some STIT validities (cont.)

1. |= ¤ϕ → [J ]ϕ
2. |= ¤ϕ → ¤[J ]ϕ
3. |= 〈AGT 〉ϕ ↔ [AGT ]ϕ
4. |= [J ]ϕ → [J ∪ I]ϕ
5. |= [J ]ϕ → ♦[J ]ϕ
6. |= ♦[J ]ϕ → ♦[J ∪ I]ϕ
7. |= (♦[1]ϕ1 ∧ . . . ∧ ♦[n]ϕn) → ♦[AGT ](ϕ1 ∧ . . . ∧ ϕn)
8. |= (♦[J ]ϕ ∧ ♦[I]ψ) → ♦[J ∪ I](ϕ ∧ ψ) if I ∩ J = ∅
9. |= (♦[J ]ϕ ∧ ♦[I]¬ϕ) → ⊥ if I ∩ J = ∅
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Discussion

♦[J ]ϕ expresses the game-theoretic concept of J ’s α-ability
for ϕ (or ∃∀-ability)

α−AbilityJϕ
def= ♦[J ]ϕ

Definition
A coalition J is said to have α-ability for ϕ if and only if there
exists a possible joint action δJ of the agents in J such that, for
all possible joint actions δ′AGT\J of the agents in AGT \ J , if J

does δJ and AGT \ J does δ′AGT\J , then ϕ will be true.
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Discussion (cont.)

¬♦[AGT \ J ]¬ϕ expresses the game-theoretic concept of J ’s
β-ability for ϕ (or ∀∃-ability)

β−AbilityJϕ
def= ¬♦[AGT \ J ]¬ϕ

Definition
A coalition J is said to have β-ability for ϕ if and only if, for
every possible joint action δ′AGT\J of the agents in AGT \ J

there exists a possible joint action δJ of the agents in J such
that if J does δJ and AGT \ J does δ′AGT\J , then ϕ will be true.
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Discussion (cont.)
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I β−Ability1alive and β−Ability2alive are true at w1, w2,
w3 and w4.
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Discussion (cont.)

χ ∧ ¬[AGT \ J ]χ expresses a basic notion of responsibility of
the form “coalition J could have prevented a certain state of
affairs χ to be true now”.

RespJχ
def= χ ∧ ¬[AGT \ J ]χ
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Discussion (cont.)
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I Resp1¬alive and Resp2¬alive are true at w2 and w4.
I Resp{1,2}¬alive and Resp{1,2}¬alive are true at w2 and w4.
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A general remark

Definition
A logic L is finitely axiomatizable if there is a finite set Ax of
axiom schemas such that ϕ is L-valid iff there is a deduction of
ϕ from (instances of) Ax using Modus Ponens and
Necessitation.

Theorem (Herzig & Schwarzentruber, 2008)
STIT with agents and groups is undecidable and not finitely
axiomatizable for AGT ≥ 3.
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A decidable fragment of STIT

The following fragment of STIT called DFSTIT is decidable:
χ ::= ⊥ | p | χ ∧ χ | ¬χ (propositional formulas)

ψ ::= [J ]χ | ψ ∧ ψ (“see-to-it” formulas)
ϕ ::= χ | ψ | ϕ ∧ ϕ | ¬ϕ | ♦ψ (“see-to-it” and “can” formulas)

where p ranges over ATM and J over 2AGT∗.

Theorem (Lorini & Schwarzentruber, 2009)
The satisfiability problem of DFSTIT is NP-complete.
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Relationship between CL and STIT

⇒ The CL operator 〈[J ]〉 is the fusion of three modalities:
historic necessity, agent’s choice, and time (next)

There is no natural translation of CL into STIT without time

For instance, the following translation does not do the job:

I tr(p) = p

I tr(ϕ ∧ ψ) = tr(ϕ) ∧ tr(ψ)
I tr(¬ϕ) = ¬tr(ϕ)
I tr(〈[J ]〉ϕ) = ♦[J ]tr(ϕ)
I tr(〈[∅]〉ϕ) = ¤tr(ϕ)
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Relationship between CL and STIT (cont.)

〈[∅]〉p ∧ 〈[∅]〉〈[J ]〉¬p is CL satisfiable but its translation into STIT is
STIT invalid

⇒ tr(〈[∅]〉p ∧ 〈[∅]〉〈[J ]〉¬p) = ¤p ∧¤♦[J ]¬p

I ¤p ∧¤♦[J ]¬p implies ¤p ∧ ♦[J ]¬p
(By T for ¤)

I ¤p ∧ ♦[J ]¬p implies ¤[J ]p ∧ ♦[J ]¬p
(By 4 for ¤ and the STIT theorem ¤ϕ → [J ]ϕ)

I ¤[J ]p ∧ ♦[J ]¬p implies ♦([J ]p ∧ [J ]¬p)
(By the STIT theorem (¤ϕ ∧ ♦ψ) → ♦(ϕ ∧ ψ))

I ♦([J ]p ∧ [J ]¬p) implies ♦[J ]⊥
I ♦[J ]⊥ implies ♦⊥

(By T for [J ])
I ♦⊥ implies ⊥
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STIT with discrete time

If we extend STIT with discrete time (modality next), CL can be
translated into STIT

The language of STIT with discrete time is defined by the
following BNF:

ϕ ::= p | ϕ ∧ ϕ | ¬ϕ | [J ]ϕ | ¤ϕ | Xϕ
where p ranges over ATM and J over 2AGT∗.

⇒ Xϕ ≈ “ϕ will be true in the next state”.
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STIT models with discrete time

A STIT-model with discrete time (and without endpoints) is a
tuple M = (W, {RJ}J⊆AGT ,H, FX , V ) where:

I W , RJ , H and V are defined as in STIT models;
I FX is a total function FX : W −→ W .

⇒ FX(w) is the successor of world w

M, w |= Xϕ iff M, FX(w) |= ϕ.
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Embedding CL into STIT with discrete time

I tr(p) = p

I tr(ϕ ∧ ψ) = tr(ϕ) ∧ tr(ψ)
I tr(¬ϕ) = ¬tr(ϕ)
I tr(〈[J ]〉ϕ) = ♦[J ]X tr(ϕ)
I tr(〈[∅]〉ϕ) = ¤X tr(ϕ)

Theorem (Broersen et al., 2006)
ϕ is CL satisfiable iff tr(ϕ) is STIT satisfiable.
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Towards intentional STIT:
from uniform strategies to

joint intentions
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A STIT extension with knowledge

We add modalities for knowledge and common knowledge to
the STIT language with discrete time:

⇒ Kiϕ: agent i knows that ϕ
⇒ CKJϕ: there is common knowledge in J that ϕ
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Epistemic STIT models with discrete time

An epistemic STIT-model with discrete time is a tuple
M = (W, {RJ}J⊆AGT ,H, FX , {Ei}i∈AGT , V ) where:

I W , RJ , H, FX and V are defined as in STIT models with
discrete time;

I For every i ∈ AGT , Ei is an equivalence (epistemic)
relation over W .

⇒ Ei(w) = {v|(w, v) ∈ Ei} are the epistemic alternatives for i
at w
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Truth conditions for knowledge and common
knowledge

M,w |= Kiϕ iff M, v |= ϕ for all (w, v) ∈ Ei

M, w |= CKJϕ iff M, v |= ϕ for all (w, v) ∈ E+
J

where
⇒ EJ =

⋃
i∈J Ei

⇒ E+
J is the reflexive transitive closure of EJ
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Interactions between knowledge and historic
necessity: discussion

⇒ Semantic constraint S1: For every w ∈ W , Ei(w) ⊆ H(w)
⇒ Corresponding axiom PerfectInfo: ¤ϕ → Kiϕ

It encodes perfect information about the situation of interaction

If we impose S1 the following become valid:

1. ¤ϕ → CKJ¤ϕ

2. ♦ϕ → CKJ♦ϕ

3. ♦[I]ϕ → CKJ♦[I]ϕ
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Interactions between knowledge and historic
necessity: discussion (cont.)

⇒ Semantic constraint S2: For every w ∈ W , Ei(w) ⊆ Ri(w)
⇒ Corresponding axiom PerfectInfo+ActAware: [i]ϕ → Kiϕ

It encodes perfect information about the structure of interaction
+ an agent’s knowledge about its current choice (the only
uncertainty is about choices of others)

Theorem
If S2 then S1.
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Interactions between knowledge and historic
necessity: discussion (cont.)

More realistic principles:

⇒ Semantic constraint (confluence) S3: ∀w ∈ W , ∀v ∈ H(w),
∀u ∈ Ei(w), H(u) ∩ Ei(v) 6= ∅
⇒ Corresponding axiom: ♦Kiϕ → Ki♦ϕ

⇒ Semantic constraint (permutation) S4: Ki ◦H = H ◦Ki

⇒ Corresponding axiom: Ki¤ϕ ↔ ¤Kiϕ

Theorem
S3 if and only if S4.
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The concept of uniform strategy

For an agent i to have the power of ensuring ϕ, i must have
both: the objective capability to achieve ϕ and, the discretion
(awareness) over his capability (Castelfranchi 2003, Barnes
1988)
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The concept of uniform strategy (cont.)

I DE DICTO sentence: “i knows that there is some action
such that if he chooses it, he will ensure ϕ in the next state”

I DE RE sentence: “there is some action such that if agent i
chooses it, he knows that he will ensure ϕ in the next state”

⇒ DE DICTO: Ki♦[i]Xϕ
⇒ DE RE: ♦Ki[i]Xϕ

Only formula ♦Ki[i]Xϕ captures a proper concept of agent i’s
power of ensuring ϕ or agent i’s uniform strategy over ϕ
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Example: an agent trying to switch on a light

w

i : t ogg le

o n

i : sk ip

i : t ogg le i : sk ip

v

o n

o nof f

F XF X

of f o f f

F X F X

of fo n

Agent i can either toggle or skip (do nothing) but he is
uncertain about the current state of the light (on or off)

I Ki♦[i]Xon is true at w and v.
I ♦Ki[i]Xon is false at w and v.
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Example: an agent trying to switch on a light (cont.)

w

i : t ogg le

o f f

i : sk ip

i : t ogg le i : sk ip

v

o f f

o f fo n

F XF X

of f o f f

F X F X

of fo n

Agent i can either toggle or skip (do nothing) and he knows the
current state of the light

I Ki♦[i]Xon is true at w and v.
I ♦Ki[i]Xon is true at w and v.
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A STIT extension with knowledge and goals

We add modalities for goals to the STIT language with discrete
time and knowledge:

⇒ Choiceiϕ: agent i wants ϕ to be true (or i has chosen to
pursue ϕ)
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Epistemic STIT models with discrete time and goals

An epistemic STIT-model with discrete time and choices is a
tuple M = (W, {RJ}J⊆AGT ,H, FX , {Ei}i∈AGT , {Ci}i∈AGT , V )
where:

I W , RJ , H, FX , Ei and V are defined as in STIT models
with discrete time and knowledge;

I For every i ∈ AGT , Ci is a serial relation over W .

⇒ Ci(w) = {v|(w, v) ∈ Ci} are the worlds that agent i wants to
achieve at w
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Truth conditions for goals

M, w |= Choiceiϕ iff M, v |= ϕ for all (w, v) ∈ Ci
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Interactions between choices and knowledge:
discussion

⇒ Semantic constraint S1: if (w, v) ∈ Ei and (v, u) ∈ Ci then
(w, u) ∈ Ci

⇒ Corresponding axiom PosIntro: Choiceiϕ → KiChoiceiϕ

⇒ Semantic constraint S2: if (w, v) ∈ Ei and (w, u) ∈ Ci then
(v, u) ∈ Ci

⇒ Corresponding axiom NegIntro: ¬Choiceiϕ → Ki¬Choiceiϕ

Choices are positively and negatively introspective
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Interactions between choices and knowledge:
discussion (cont.)

⇒ Semantic constraint S3: Ci(w) ⊆ Ei(w)
⇒ Corresponding axiom Compat: Kiϕ → Choiceiϕ

Choices are realistic (i.e. an agent can only choose states that
he considers possible
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Joint intentions

What “we intend to do something together” means?

I We intend to paint a house
I We intend to organize a party
I We intend to write a paper together
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Joint intentions (cont.)

I Individualistic/reductionist approaches (Bratman 1996,
1999): joint intentions can be analyzed as an interlocking
web of goals, preferences and intentions of individual
agents.

I Non-reductionist approaches: a joint intention is
characterized by a sense of collectivity or sharedness that
is lost when one reduces it to a summation of individual
preferences, goals and intentions.

I Joint intentions are intentions of individuals that reason and
act as group/team members (Bacharach, 2006; Gold &
Sugden, 2006).

I Distinction between WE-mode and I-mode (Tuomela,
1995).

We here consider the first kind of approaches
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Joint intentions (cont.)

Three levels in Bratman’s analysis of joint intention

1. Joint goal to ensure ϕ: I intend and you intend that we
ensure ϕ.

2. Joint plan to ensure ϕ: I intend and you intend that we
perform the joint action δ in order to ensure ϕ.

3. Common ground: conditions 1 and 2 are common
knowledge between me and you.
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Example: two agents taking care of a plant

R
2

R
1

R
1

R
2

( sk i p )

w1 w4

w3w2

a l i ve

a l i ve

( w a t e r )

( sk i p )

( w a t e r )
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Joint intentions (cont.)

1. I intend and you intend that we ensure that the plant is
alive.

2. I intend and you intend that we perform the joint action “I
water the plant, you do nothing” in order to ensure that the
plant is alive.

3. Conditions 1 and 2 are common knowledge between me
and you.
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Joint intentions (cont.)

JInt{1,2}alive
def= CK{1,2}(Choice1[{1, 2}]Xalive∧Choice2[{1, 2}]Xalive)

JInt{1,2}alive means “1 and 2 have the joint goal to ensure that
the plant is alive”

JInt{1,2}(〈skip1,water2〉, alive) def=

CK{1,2}(Choice1[{1, 2}](skip1 ∧ water2 ∧ Xalive)∧
Choice2[{1, 2}](skip1 ∧ water2 ∧ Xalive))

JInt{1,2}(〈skip1,water2〉, alive) means “1 and 2 jointly intend to
perform the (joint) plan 〈skip1,water2〉 in order to ensure that
the plant is alive”

70/ 73



References

I Alur, R., Henzinger, T., Kupferman, O. (2002). Alternating-time temporal
logic. Journal of the ACM, 49:672-713.

I Bacharach, M. (2006). Beyond Individual Choice. Teams and Frames in
Game Theory. Princeton University Press.

I Barnes, B. (1988). The Nature of Power. Polity Press.
I Belnap, N. Perloff, M., Xu, M. (2001). Facing the future: agents and

choices in our indeterminist world. Oxford University Press.
I Bratman, M. (1999). Faces of Intention. Cambridge University Press.
I Bratman, M. (1996). Shared Cooperative Activity. The Philosophical

Review, 101(2):327-341.
I Balbiani, P. Herzig, A., Troquard, N. (2008). Alternative axiomatics and

complexity of deliberative STIT theories. Journal of Philosophical Logic,
37(4):387-406.

I Broersen, J. Herzig, A., Troquard, N. (2007). Normal coalition logic and
its conformant extension. In Proceedings of the eleventh conference on
Theoretical Aspects of Rationality and Knowledge (TARK 2007), pp.
91-101.

71/ 73



References

I Broersen, J. Herzig, A., Troquard, N. (2006). Embedding
Alternating-time Temporal Logic in strategic STIT logic of agency.
Journal of Logic and Computation, 16(5):559-578.

I Castelfranchi, C. (1996). The micro-macro constitution of power.
Protosociology, 18-19.

I Herzig, A., Schwarzentruber, F. (2008). Properties of logics of individual
and group agency. In Proceedings of Advances in Modal Logic 2008
(AiML 2008).

I van der Hoek, W., Wooldridge, M. (2005). On the logic of cooperation
and propositional control. Artificial Intelligence, 64(1-2):81-119.

I Horty, J. F., Belnap, N. (1995). The deliberative STIT: A study of action,
omission, and obligation. Journal of Philosophical Logic, 24(6):583-644.

I Horty, J. F. (2001). Agency and Deontic Logic, Oxford University Press.
I Kanger, S. (1972). Law and Logic. Theoria, 38:105-132.

72/ 73



References

I Lorini, E., Schwarzentruber, F. (2009). A Logic for Reasoning about
Counterfactual Emotions. In Proceedings of the Twenty-first
International Joint Conference on Artificial Intelligence (IJCAI’09).

I Pauly, M. (2002). A modal logic for coalitional power in games. Journal
of Logic and Computation, 12(1):149-166.

I Pauly, M. (2001). Logic for Social Software. PhD thesis, University of
Amsterdam, The Netherlands.

I Pörn, I. (1977). Action Theory and Social Science: Some Formal
Models. Synthese Library, Reidel.

I Tuomela, R. (1995). The Importance of Us: A Philosophical Study of
Basic Social Notions. Stanford University Press.

73/ 73


