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Beliefs of agents and beliefs of groups

I Bill believes that ϕ (Bob is a honest person, Earth must be
protected, etc.)

I Bill and Mary believe that ϕ.
I Both Mary and Bill believe that ϕ?
I Mary and Bill, by pooling their beliefs together, can infer ϕ?
I Bill believes that ϕ, Mary believes that ϕ, Bill believes that

Mary believes that ϕ, Mary believes that Bill believes that ϕ,
and so on.

I Mary and Bill, qua members of the same group,
believe/accept that ϕ?
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Reductionist vs. non-reductionistic approaches

Suppose J is a set of agents
I Reductionistic approaches: group belief can be reduced

to an aggregate of individual beliefs.
I E.g. summative view (Quinton, 1975): A group J believes ϕ
≈ all or most of the agents in J believe ϕ.

I but also common belief, distributed belief.
I Non-reductionistic approaches (Gilbert, 1989; Tuomela,

1992; Tuomela, 2002): the concept of constituted group +
irreducibility of group belief.

I A group J believes ϕ ≈ the agents in J are functioning as
members of the same group and they accept ϕ to stand as
the view of the group.

I Group J may believe ϕ even though nobody in J
individually believes ϕ.
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Reductionist vs. non-reductionistic approaches (cont.)

Engel (1998) prefers the term collective acceptance in order
to refer to a non-reductionistic notion of group belief
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The logic of distributed
belief
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The concept of distributed belief

⇒ A set of agents I has a distributed belief that ϕ if and only if
by pooling their beliefs together the agents in I can deduce ϕ,
even though it may be the case that anybody in I believes ϕ

Example (Two detectives)

I 1 believes that the murderer is a tall person and is
uncertain whether the murderer is a young person,

I 2 believes that the murderer is young and is uncertain
whether the murderer is tall.

Therefore, 1 and 2 have a distributed belief that the murderer is
tall and young even though nobody believes this.
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Language

I AGT : a set of agents (or individuals);
I ATM : a set of atomic formulas;
I 2AGT∗ = 2AGT \ ∅.

Language:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | Biϕ | DBIϕ

p ranges over ATM , i ranges over AGT , I ranges over 2AGT∗

⇒ Biϕ: agent i believes that ϕ.
⇒ DBIϕ: the agents in I have a distributed belief that ϕ.
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Models

Doxastic models are tuples 〈W,B,V〉 where:
I W is a non-empty set of worlds (or states);
I B yields a serial, transitive and Euclidian accessibility

relation Bi ⊆ W ×W for every i ∈ AGT .
I Serial: for every w ∈ W there exists v such that (w, v) ∈ Bi.
I Transitive: if (w, v) ∈ Bi and (v, u) ∈ Bi then (w, u) ∈ Bi.
I Euclidian: if (w, v) ∈ Bi and (w, u) ∈ Bi then (v, u) ∈ Bi.

I V : ATM → 2W .

For every w ∈ W , Bi(w) = {v|(w, v) ∈ Bi} is the set of worlds
that are possible for agent i at w (i’s information state)
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Truth conditions

I M, w |= p iff w ∈ V(p)
I M, w |= ¬ϕ iff not M, w |= ϕ

I M, w |= ϕ ∨ ψ iff M, w |= ϕ or M, w |= ψ

I M, w |= Biϕ iff M, v |= ϕ for all (w, v) ∈ Bi

I M, w |= DBIϕ iff M, v |= ϕ for all (w, v) ∈ DI

where
⇒ DI = {(w, v)|(w, v) ∈ ⋂

i∈I Bi}

11/ 75



Example: detectives

1 / 21

ta l l

1

2

1 / 2 2

1 2ta l l y o u n g
y o u n g

B1tall ∧B2young ∧¬B1young ∧¬B2tall ∧DB{1,2}(tall ∧ young)
is true at the red world
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A complete axiomatization of distributed belief logic

(ProTau) All tautologies of propositional calculus
(KBi) (Biϕ ∧Bi(ϕ → ψ)) → Biψ

(DBi) ¬(Biϕ ∧Bi¬ϕ)
(4Bi) Biϕ → BiBiϕ

(5Bi) ¬Biϕ → Bi¬Biϕ

(KDBI
) (DBIϕ ∧DBI(ϕ → ψ)) → DBIψ

(4DBI
) DBIϕ → DBIDBIϕ

(5DBI
) ¬DBIϕ → DBI¬DBIϕ

(IntBi,DB{i}) Biϕ ↔ DB{i}ϕ
(MonDBI

) DBIϕ → DBJϕ if I ⊆ J

(MP) If ϕ and ϕ → ψ then ψ

(NecBi) If ϕ then Biϕ

(NecDBI
) If ϕ then DBIϕ
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A remark

We might have
⋂

i∈I Bi(w) = ∅ for |I| > 1

DBI⊥ is consistent for |I| > 1

where DBI⊥ means that the agent in I do not have a
distributed belief
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The logic of common belief
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The concept of common belief

Common belief that ϕ in a set of agents I ≈
the agents in I mutually believe that ϕ for every order k ≥ 0 .

every agent in I believes ϕ, every agent in I believes that every
agent in I believes ϕ, and so on ad infinitum.

I Aumann (1976, 1999) gives the first mathematical
characterization of a similar concept using set theory:
common knowledge (common K is always truthful).

I Theories of common B/common K using
doxastic/epistemic logic can be found in Bacharach (1992),
Bicchieri (1989), Fagin et al. (1995).
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The concept of common belief (cont.)

Common belief is a fundamental concept for the explanation of
team activity, coordination, communication.

I Joint/team activity involves common belief (Grosz & Kraus,
1996).

I The concept of convention, as a solution to coordination
problems, is classically defined in terms of common belief
(Lewis, 1969).

I Common belief justifies the plausibility of Equilibrium
notions in game theory like Nash Equilibrium, Iterated
Strict Dominance, Rationalizability (Battigalli & Bonanno,
1999).

I Common belief has been used to define the concept of
common ground in a conversation (Stalnaker, 2001) as a
fundamental basis for discourse understanding and
definite reference (Clark & Marshall, 1981; Schiffer, 1972).
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Language

Language:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | Biϕ | CBIϕ

p ranges over ATM , i ranges over AGT , I ranges over 2AGT∗

⇒ CBIϕ: there is a common belief that ϕ in I.
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Further concepts

I Agent i has a doubt about ϕ.

I Doubtiϕ
def= ¬Biϕ ∧ ¬Bi¬ϕ

I Everybody in I believes ϕ.

I EBIϕ
def=

∧
i∈I Biϕ
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Models

Doxastic models are tuples 〈W,B,V〉 where:
I W is a non-empty set of worlds (or states);
I B yields a serial, transitive and Euclidian accessibility

relation Bi ⊆ W ×W for every i ∈ AGT .
I V : ATM → 2W .

For every w ∈ W , Bi(w) = {v|(w, v) ∈ Bi} is the set of worlds
that are possible for agent i at w (i’s information state)
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Truth conditions

I M, w |= CBIϕ iff M, v |= ϕ for all (w, v) ∈ B+
I

where
⇒ BI =

⋃
i∈I Bi

⇒ B+
I is the transitive closure of BI
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Example 1: a real secret

1 / 2 / 3

3

1 / 2 / 3

p

EB{1,2}p ∧Doubt3p ∧CB{1,2}(p ∧Doubt3p)
is true at the red world
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Example 2: an apparent secret

1 / 2

3

1 / 2 / 3 3

3

1 / 2

p

p

EB{1,2,3}p ∧CB{1,2}(p ∧Doubt3p) ∧B3CB{1,2}(p ∧Doubt3p)
is true at the red world
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A complete axiomatization of common belief logic

(ProTau) All tautologies of propositional calculus
(KBi) (Biϕ ∧Bi(ϕ → ψ)) → Biψ

(DBi) ¬(Biϕ ∧Bi¬ϕ)
(4Bi) Biϕ → BiBiϕ

(5Bi) ¬Biϕ → Bi¬Biϕ

(KCBI
) (CBIϕ ∧CBI(ϕ → ψ)) → CBIψ

(FixPoint) CBIϕ → EBI(ϕ ∧CBIϕ)
(MP) If ϕ and ϕ → ψ then ψ

(NecBi) If ϕ then Biϕ

(NecCBI
) If ϕ then CBIϕ

(Induction) If ϕ → EBI(ϕ ∧ ψ) then ϕ → CBIψ
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Some theorems

I ` CBIϕ → EBIϕ

I ` ¬(CBIϕ ∧CBI¬ϕ)
I proof:

1. ` (CBIϕ → EBIϕ) ∧ (CBI¬ϕ → EBI¬ϕ)
by Fixpoint Axiom

2. ` (CBI ∧CBI¬ϕ) → EBI⊥ from 1 by prop. calculus
3. ` EBI⊥ → ⊥ by Axiom DBi

4. ` (CBI ∧CBI¬ϕ) → ⊥ from 2,3

I ` CBIϕ → CBJϕ if J ⊆ I

I proof:
1. ` EBIϕ → EBJϕ by prop. calculus
2. ` CBIϕ → EBJ(ϕ ∧CBIϕ) from 1 by Fixpoint Axiom
3. ` CBIϕ → CBJϕ from 2 by Induction Rule
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Some theorems (cont.)

I ` CBIϕ → CBICBIϕ

I proof:
1. ` CBIϕ → EBICBIϕ by Fixpoint Axiom
2. ` CBIϕ → EBI(CBIϕ ∧CBIϕ) from 1
3. ` CBIϕ → CBICBIϕ from 2 by Induction Rule

I ` CBIϕ →
∧

1≤k≤n EBk
Iϕ

I ` EBICBIϕ → CBIϕ

I proof:
1. ` EBICBIϕ → EBIEBI(ϕ ∧CBIϕ)

by Fixpoint Axiom, Axiom K and Necessitation for Bi

2. ` EBIEBI(ϕ ∧CBIϕ) → EBI(ϕ ∧EBICBIϕ)
by Theorem EBIEBIϕ → EBIϕ

3. EBICBIϕ → EBI(ϕ ∧EBICBIϕ) from 1,2
4. EBICBIϕ → CBIϕ from 3 by Induction Rule
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Some invalid properties

I 6|= ¬CBIϕ → CBI¬CBIϕ

I 6|= BiCBIϕ → CBIϕ

1 / 2

1
p

2
p

2 1

¬CB{1,2}p ∧ ¬CB{1,2}¬CB{1,2}p ∧B1CB{1,2}p
is true at the red world
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Common belief in coordination problems

Example
The agents in AGT have to move an attack against an enemy.
The attack will be successful iff it is a coordinated attack
(everybody attacks the enemy). We assume that:

1. an agent attacks iff he believes that the others also attack,
2. the agents have a common belief about this.

(Hyp1 )
∧

i∈AGT (attack i ↔ Bi
∧

j∈AGT attack j)
(Hyp2 ) CBAGT Hyp1

Hyp1 and Hyp2 imply that everybody attacks iff there is
common belief that everybody attacks:

` (Hyp1 ∧Hyp2 ) → (
∧

i∈AGT

attack i ↔ (CBAGT

∧

i∈AGT

attack i))
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Proof: left-to-right direction
We note χ =

∧
i∈AGT attack i

1. (Hyp1 ∧Hyp2 ∧ χ) →
(EBAGT χ ∧CBAGT (χ ↔ EBAGT χ))

2. (EBAGT χ ∧CBAGT (χ ↔ EBAGT χ)) →
(EBAGT χ ∧EBAGT ((χ ↔ EBAGT χ) ∧CBAGT (χ ↔ EBAGT χ)))
by Fixpoint Axiom

3. (EBAGT χ ∧EBAGT ((χ ↔ EBAGT χ) ∧CBAGT (χ ↔ EBAGT χ))) →
(EBAGT χ ∧EBAGT EBAGT χ ∧EBAGT CBAGT (χ ↔ EBAGT χ))
by Theorem EBAGT χ → EBAGT EBAGT χ

4. (EBAGT χ ∧EBAGT EBAGT χ ∧EBAGT CBAGT (χ ↔ EBAGT χ)) →
EBAGT (χ ∧EBAGT χ ∧CBAGT (χ ↔ EBAGT χ))

5. (EBAGT χ ∧CBAGT (χ ↔ EBAGT χ)) →
EBAGT (χ ∧EBAGT χ ∧CBAGT (χ ↔ EBAGT χ))
from 2,3,4

6. (EBAGT χ ∧CBAGT (χ ↔ EBAGT χ)) → CBAGT χ
from 5 by Induction Rule

7. (Hyp1 ∧Hyp2 ) → (χ → CBAGT χ)
from 1,6
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The dynamics of common belief

I Common belief can be created by means of public
announcements.

I A certain fact ϕ is perceived/observed by every agent.
I All agents have a common belief that ϕ has been

perceived/observed by every agent.

⇒ ϕ!: public announcement of ϕ.
⇒ [ϕ!]ψ: ψ holds after the public announcement of ϕ.
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The dynamics of common belief (cont.)

M, w |= [ϕ!]ψ iff Mϕ!, w |= ψ

The updated model Mϕ! is the tuple 〈Wϕ!,Bϕ!,Vϕ!〉 where:
I Wϕ! = W ;
I For every i ∈ AGT , Bϕ!

i = {(w, v) ∈ Bi|M,v |= ϕ};
I For every p ∈ ATM , Vϕ!(p) = V(p).
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The dynamics of common belief (cont.)

p !
p

p

p

p

p

p

p

p

i
Ri

R
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A remark

Axiom D for Bi and the corresponding propriety of seriality for
every Bi must be removed when adding announcements.
Indeed:

|= Bi¬p → [p!]Bi⊥
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The muddy children problem

A B
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The muddy children problem (cont.)

A / B

A

B

m B

m A

m A m B

B

A

A / BA / B

A / B

Father says: “at least one of you is muddy!”

⇒ mA ∨mB!
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The muddy children problem (cont.)

A / B

A

B

m B

m A

m A m B

B

A

A / BA / B

Father asks: “are you muddy?”
A says: “I don’t know!” and B says: “I don’t know!”

⇒ DoubtAmA ∧DoubtBmB!
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The muddy children problem (cont.)

A / B

B

m B

m A

m A m B
A

A / BA / B

1 and 2 have reached a common belief that mA ∧mB

⇒ CB{1,2}(mA ∧mB) is true at the red world
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The muddy children problem (cont.)

A / B

A

B

m B

m A

m A m B

B

A

A / BA / B

A / B

[mA ∨mB!][DoubtAmA ∧DoubtBmB!] CB{1,2}(mA ∧mB)
is true at the red world
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The “unforeseen” appearance of common belief

[q!]CB{1,2}p ∧ ¬CB{1,2}(q → p) is true at the red world

2

1 2

2 1

p qp q

2

2

2

p qp q

q !
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Concluding remarks

Is common belief a good candidate for a concept of proper
group belief?

I No notion of ‘group’ stricto sensu involved in the notion of
common belief: ‘group of agents’ 6= ‘set of agents’.

I Agents i and j might have a common belief that ‘2 + 2 = 4’
even if i and j do not know each other and are not
members of the same group.

I Individual belief and group belief should be independent.
I At the end of the 80s, the Communist Party of Ruritania

believed/accepted that capitalist countries will soon perish,
but none of its members really believed so (Tuomela, 1992).

I Common belief in I implies individual belief for every agent
in I (` CBIϕ → Biϕ, if i ∈ I).

...towards a notion of collective acceptance
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The logic of collective
acceptance
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Acceptance qua members of a group

Acceptance logic (Lorini & Longin, 2008; Lorini et al., 2009;
Herzig, de Lima, Lorini, 2009) allows to reason about the
following two aspects:

I Certain agents identify themselves as members of the
same group, or organization, or team, or institution, etc.
and recognize mutually as members of the same group, or
organization, or team, or institution, etc. (Gilbert, 1989)
and,

I they accept certain things qua members of the same
group, or organization, or team, or institution, etc.
(Tuomela, 2007).

42/ 75



Individual acceptance vs. collective acceptance

I Individual acceptance: a certain agent i accepts that
something is true, qua member of a certain group (or
organization, or team, or institution, etc.)

I Collective acceptance: the agents in C accept that
something is true, qua member of the same group (or
organization, or team, or institution, etc.)

Example
Agent i, qua lawyer, accepts that his client is innocent.

Example
Three agents i, j and z accept that their mission is to protect
the Earth qua members of Greenpeace.
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Acceptance Logic (AL)

I AGT : a finite set of agents;
I ATM : a countable set of atomic formulas;
I X: a finite set of social contexts (group, organization,

team, institution, etc.).

We note 2AGT∗ = 2AGT \ ∅

Language:
ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | AI:xϕ

where I ranges over 2AGT∗ and x ranges over X

ÂI:xϕ =def ¬AI:x¬ϕ
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Acceptance Logic (AL)

AI:xϕ
‘if the agents in I function together as members of x then they
accept ϕ’ (or ‘the agents in I accept that ϕ while functioning
together as members of x’).

ÂI:x>
‘the agents in I are functioning together as members of x’.

ÂI:x> ∧AI:xϕ
‘the agents in I accept that ϕ qua members of x’.
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AL Models

Acceptance models are tuples 〈W,A,V〉 where:
I W is a non-empty set of worlds (or states);
I A yields an accessibility relation AI,x ⊆ W ×W for every

I ∈ 2AGT∗ and x ∈ X.
I V : ATM → 2W .

AI,x(w) = {v|(w, v) ∈ AI,x}: the worlds accepted by the agents
in I while functioning as members of group x at world w (I ’s
acceptance state in the context x)

Remark
6= common belief, the accessibility relations for collective
acceptances are not computed from the accessibility relations
for individuals.
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Constraints on AL models

For every x, y ∈ X and I, J ∈ 2AGT∗ such that J ⊆ I:
(S.1) If (w, v) ∈ AJ,y and (v, u) ∈ AI,x then

(w, u) ∈ AI,x.
(S.2) If (w, v) ∈ AJ,y and (w, u) ∈ AI,x then

(v, u) ∈ AI,x.
(S.3) If AI,x(w) 6= ∅ then AJ,x ⊆ AI,x(w).
(S.4) If v ∈ AI,x(w) then v ∈ ⋃

i∈I Ai,x(v).
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Constraints on AL models (cont.)

For J ⊆ I

( S 4 )

A
I , x

( S 1 )

A
J , y

A
I , x

A
I , x

( S 2 )

A
I , x

A
J , y

A
I , x

( S 3 )

A
i ,x

w v u

w

v u

vwA
I , x

A
J , y
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Truth conditions

I M, w |= p iff w ∈ V(p)
I M, w |= ¬ϕ iff not M, w |= ϕ

I M, w |= ϕ ∨ ψ iff M, w |= ϕ or M, w |= ψ

I M, w |= AI:xϕ iff M, v |= ϕ for all (w, v) ∈ AI,x
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Example: agreements and disagreements

3 : P a r l i a m e n t

3 : P a r l i a m e n t

w a r

w a r

1 2 3 : P a r l i a m e n t

2 : P a r l i a m e n t

1 2 3 : P a r l i a m e n t

1 : P a r l i a m e n t

1 2 : P a r l i a m e n t

1 : P a r l i a m e n t

2 : P a r l i a m e n t

1 2 3 : P a r l i a m e n t

1 2 : P a r l i a m e n t

1 2 : P a r l i a m e n t

1 2 3 : P a r l i a m e n t

1 2 3 : P a r l i a m e n t

1 2 3 : P a r l i a m e n t

1 2 3 : P a r l i a m e n t

1 2 3 : P a r l i a m e n t
1 2 : P a r l i a m e n t

1 2 3 : P a r l i a m e n t
1 2 : P a r l i a m e n t

Â1:Parliament> ∧A1:Parliamentwar∧
Â2:Parliament> ∧A2:Parliamentwar∧
Â3:Parliament> ∧A3:Parliament¬war∧
Â12:Parliament> ∧A12:Parliamentwar∧
¬A123:Parliamentwar ∧ ¬A1,2,3:Parliament¬war
is true at the red world
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A complete axiomatization of AL

(ProTau) All tautologies of propositional calculus
(KAI:x

) (AI:xϕ ∧AI:x(ϕ → ψ)) → AI:xψ

(PIntr) AI:xϕ → AJ :yAI:xϕ if J ⊆ I

(NIntr) ¬AI:xϕ → AJ :y¬AI:xϕ if J ⊆ I

(Incl) (ÂI:x> ∧AI:xϕ) → AJ :xϕ if J ⊆ I

(Unanim) AI:x(
∧

i∈I Ai:xϕ → ϕ)
(MP) If ϕ and ϕ → ψ then ψ

(NecAI:x
) If ϕ then AI:xϕ
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Example 1

Agent 1 and agent 2, qua Clue players, accept that Mrs Red is
the killer (noted r):

Â12:Clue> ∧A12:Cluer

By axiom (Incl) we infer

A1:Cluer ∧A2:Cluer
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Example 2

Agents 1, 2 and 3 accept that the President of Republic is the
supreme authority while functioning as French citizens:

A123:FrancePresAuth

Agents 1, 2 and 3 accept that the Pope is the supreme authority
while functioning as Catholics:

A123:CathPopeAuth

By Axiom (PIntr) we infer:

A12:CathA123:FrancePresAuth ∧A12:FranceA123:CathPopeAuth

⇒ Every group accepts (the validity of) other groups’
acceptances
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Example 3: discursive dilemma (Pettit, 2001)

A three-member committee c has to judge whether a student
can be admitted to a PhD program in Logic and Computation.
According to the admission rule used for deciding: a student
can be admitted (adm) iff he is good in mathematics (math) and
in English writing (Eng). That is,

adm ↔ (math ∧ Eng).

The three-member committee uses a majority rule to decide on
the issue.
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Example 3: discursive dilemma (cont.)

math Eng adm ↔ (math ∧ Eng) adm

Judge 1 yes yes yes yes
Judge 2 yes no yes no
Judge 3 no yes yes no
Majority yes yes yes no/yes (⊥)

Table: doctrinal paradox

55/ 75



Example 3: discursive dilemma (cont.)

A The three judges publicly agree on the admission
rule: A123:c(adm ↔ (math ∧ Eng)) ∧ Â123:c>.

B Judge 1 says that he accepts math ∧ Eng:
A123:cA1:c(math ∧ Eng).

C Judge 2 says that he accepts math ∧ ¬Eng:
A123:cA2:c(math ∧ ¬Eng).

D Judge 3 says that he accepts ¬math ∧ Eng:
A123:cA3:c(¬math ∧ Eng).

E Majority rule is used. For every J such that
J ⊆ {123} and |J | ≥ 2 and for every ϕ such that
ϕ ∈ {math,¬math,Eng,¬Eng, adm,¬adm}:

A123:c(
∧

i∈J

Ai:cϕ → ϕ)

We can prove that (A ∧B ∧ C ∧D ∧ E) → ⊥!
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Some theorems

1. ` AI:xÂI:x>
2. ` AJ :yAI:xϕ ↔ (AJ :y⊥ ∨AI:xϕ) if J ⊆ I

3. ` AJ :y¬AI:xϕ ↔ (AJ :y⊥ ∨ ¬AI:xϕ) if J ⊆ I

4. ` AI:x(AI:xϕ → ϕ)
5. ` (

∧
i∈I AI:xAi:xϕ) → AI:xϕ

57/ 75



Some invalid properties

I 6|= ÂI:x> → ÂJ :x> if J ⊆ I

⇒ Constituted groups are not closed under subsets

Example
Eleven players {1, . . . , 11} constitute a football team while
{1, . . . , 10} do not constitute a football team.
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Some invalid properties (cont.)

I 6|= (ÂI:x> ∧ ÂJ :x>) → ÂI∪J :x>
⇒ Constituted groups are not closed under set union

Example
{1, 2} recognize mutually as owners of a property, {3, 4}
recognize mutually as owners of the same property, {1, 2, 3, 4}
do not recognize mutually as owners of the property.
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Some remarks: beyond unanimity

Take two specific sets of agents I and J such that J ⊆ I and
|I \ J | < |J | (i.e. J represents the majority of agents in I):

(Majority) AI:x((
∧

i∈J

Ai:xϕ) → ϕ)

Suppose Leader(x) ⊆ AGT is the set of leaders of group x:

(Leader) AI:x((
∧

i∈Leader(x)

Ai:xϕ) → ϕ)
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Some remarks: beyond unanimity (cont.)

Taking (Majority) as a logical axiom might be dangerous...

Theorem
Suppose (Majority) is valid for any I, J such that J ⊆ I and
|I \ J | < |J | then, for i 6= j we have:

(AAGT :xA{i,j}:xϕ ∧
∧

I∈2AGT∗
ÂI:x>) → AAGT :xϕ
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Extending Acceptance Logic with beliefs

Language of AL + B (Acceptance Logic with beliefs):

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | AI:xϕ | Biϕ

where I ranges over 2AGT∗, x ranges over X and i ranges over
AGT
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AL + B Models

AL + B models are tuples 〈W,A,B,V〉 where:
I 〈W,A,V〉 is a AL model;
I B yields a doxastic (serial, transitive and Euclidian)

accessibility relation Bi ⊆ W ×W for every i ∈ AGT .
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Interaction principles between acceptance and belief

I AI:xϕ → BiAI:xϕ if i ∈ I

I ¬AI:xϕ → Bi¬AI:xϕ if i ∈ I

The three principles correspond to the following constraints on
AL + B models:

(S.1) If (w, v) ∈ Bi and (v, u) ∈ AI,x then (w, u) ∈ AI,x.
(S.2) If (w, v) ∈ Bi and (w, u) ∈ AI,x then (v, u) ∈ AI,x.
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Discussion

⇒ Acceptances are public

By the interaction principles AI:xϕ → BiAI:xϕ and
¬AI:xϕ → Bi¬AI:xϕ (with i ∈ I) we can infer:

AI:xϕ ↔
∧

1≤k≤n

EBk
IAI:xϕ

¬AI:xϕ ↔
∧

1≤k≤n

EBk
I¬AI:xϕ
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Discussion (cont.)

⇒ Acceptance and belief might be incompatible: some agents
can privately disbelieve something they accept while
functioning as members of a given group (or organization, or
team, or institution, etc.)

Example
At the end of the 80s, the Communist Party of Ruritania
accepted that capitalist countries will soon perish but none of
its members really believed so (Tuomela, 1992):

AI:CPRccwp ∧
∧

i∈I

¬Biccwp

should be satisfiable.
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Discussion (cont.)

⇒ Collective acceptances could be built by the expression of
unanimous opinions to the other members of the group

In certain situations the principle

AI:x(
∧

i∈I

Biϕ → ϕ)

sounds reasonable
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Example

WHO members accept that if each of them expresses the
opinion that ‘swine flu’ should be considered to be pandemic
then ‘swine flu’ is pandemic:

AI:WHO(
∧

i∈I

Bipandemic → pandemic)

Suppose WHO members express unanimous opinions on the
issue:

AI:WHO(
∧

i∈I

Bipandemic)

It follows that that the WHO members accept that ‘swine flu’ is
pandemic:

AI:WHOpandemic
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Discussion (cont.)

The formula

AI:x(
∧

i∈I

Biϕ → ϕ)

cannot be taken as a logical axiom which is valid for every
institution x, for every set of agents I and for every formula ϕ
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Counterexample: symbolic game between two
children (Piaget, 1951)

Two children are playing a game which consists in ‘changing
the natural order of things’ through imagination.

1 and 2 could accept qua players of the game that a broom is a
horse (BisH ) and ‘riding’ it, i.e.

A{1,2}:gameBisH ∧ ¬A{1,2}:game⊥,

even if they accept that each of them believes that the broom is
not a horse, i.e.

A{1,2}:game(B2¬BisH ∧B2¬BisH ).

The previous two formulas are inconsistent with the formula

A{1,2}:game((B1¬BisH ∧B2¬BisH ) → ¬BisH ).
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Discussion (cont.)

⇒ Belief aims at truth, while acceptance does not necessarily
so (Engel, 1998)

The following is a theorem of doxastic logic:

` Bi(Biϕ → ϕ)
Proof:

1. ` ¬Biϕ → Bi¬Biϕ Axiom 5 for Bi

2. ` Biϕ ∨Bi¬Biϕ From 1

3. ` Bi(ϕ ∨ ¬Biϕ) From 2 by standard modal principles for Bi

4. ` Bi(Biϕ → ϕ) From 3
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Discussion (cont.)

In contrast, the formula Bi(Ai:xϕ → ϕ) should not be valid

Example
Consider the lawyer who at court accepts his client is innocent,
and believes so, i.e. Bi1Ai1:court innocent , while privately
believing the contrary, i.e. Bi1¬innocent . If Bi(Ai:xϕ → ϕ) was
valid then this would entail Bi1Ai1:court innocent → Bi1innocent .
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