"Individual and collective intentionality" Introductory course @ ESSLLI'09

Andreas Herzig and Emiliano Lorini

IRIT-CNRS, University of Toulouse, France www.irit.fr/~Andreas.Herzig/Esslli09course

herzig@irit.fr,lorini@irit.fr

Bordeaux, July 2009

Mondayepistemic logic and its dynamicsTuesdaydoxastic logic and its dynamicsWednesdaylogic of goals and intentionsThursdaycommon belief, group belief and group acceptanceFridaygroup action, group intention

Tuesday: Doxastic logic and the dynamics of belief

A. Herzig & E. Lorini ()

Plan

Multiagent doxastic logic KD45_n

Doxastic logic: introduction and language

- Doxastic logic: semantics
- Doxastic logic: axiomatics

2 Discussions

3 Dynamics of belief

Doxastic logic: introduction

- when is knowledge the appropriate informational attitude?
- remember: "knowledge implies truth" principle in epistemic logic:

$$\models_{\mathcal{S5}_n} \mathsf{K}_i \varphi \to \varphi$$

Doxastic logic: introduction

- when is knowledge the appropriate informational attitude?
- remember: "knowledge implies truth" principle in epistemic logic:

$$\models_{S5_n} \mathsf{K}_i \varphi \to \varphi$$

- relevant for:
 - formal epistemology
 - what is knowledge?
 - is knowledge possible at all?
 - * are all truths knowable?

Doxastic logic: introduction

- when is knowledge the appropriate informational attitude?
- remember: "knowledge implies truth" principle in epistemic logic:

$$\models_{S5_n} \mathsf{K}_i \varphi \to \varphi$$

- relevant for:
 - formal epistemology
 - ★ what is knowledge?
 - is knowledge possible at all?
 - are all truths knowable?
 - distributed processes [FHMV95]
 - 'muddy children' and other puzzles
 - cryptographic protocols [Abadi et al., Ditmarsch03]

Doxastic logic: introduction (ctd.)

relation of to truth less in focus in:

- philosophy of mind
 - ★ focus on *i*'s mental state
- philosophy of language
 - ★ effects of speech acts on the participants' mental states
- implementation of artificial agents

∃ ► < ∃ ►</p>

4 D b 4 A b

Doxastic logic: introduction (ctd.)

- relation of to truth less in focus in:
 - philosophy of mind
 - ★ focus on *i*'s mental state
 - philosophy of language
 - * effects of speech acts on the participants' mental states
 - implementation of artificial agents
- informational mental attitude not implying truth: belief
 - "he knows that φ , but he is wrong": inconsistent
 - "he believes that φ , but he is wrong" should be is consistent

'belief aims at truth' [Eng98, Hak06]

- doxastic logic [Hin62, Len78, Len95]
 - $doxa = \delta o \xi \alpha$ = 'believe' (Greek)

A B F A B F

BNF:

$$arphi \quad ::= \quad oldsymbol{p} \mid \perp \mid \neg arphi \mid (arphi \land arphi) \mid oldsymbol{\mathsf{B}}_{i} \, arphi$$

where *p* ranges over *Atms* and *i* ranges over *Agts*

• $B_i \varphi$ = "agent *i* believes that φ "

∃ ► < ∃ ►</p>

BNF:

$$arphi \quad ::= \quad oldsymbol{p} \mid \perp \mid \neg arphi \mid (arphi \land arphi) \mid oldsymbol{\mathsf{B}}_i \, arphi$$

where p ranges over Atms and i ranges over Agts

- $B_i \varphi$ = "agent *i* believes that φ "
- examples of formulas:
 - $m_1 \wedge B_1 \neg m_1$
 - ▶ B₁ ¬*m*₁ ∧ B₂ B₁ *m*₁
 - $B_1 (B_2 m_1 \vee B_2 \neg m_1)$

3 + 4 = +

BNF:

$$arphi \quad ::= \quad p \mid \perp \mid \neg \varphi \mid (\varphi \land \varphi) \mid \mathsf{B}_i \varphi$$

where p ranges over Atms and i ranges over Agts

A D b 4 A b

- $B_i \varphi$ = "agent *i* believes that φ "
- examples of formulas:
 - $m_1 \wedge B_1 \neg m_1$
 - ▶ B₁ ¬*m*₁ ∧ B₂ B₁ *m*₁
 - $B_1 (B_2 m_1 \vee B_2 \neg m_1)$
- abbreviation:
 - $\blacktriangleright \hat{\mathsf{B}}_{i}\varphi \stackrel{\mathsf{def}}{=} \neg \mathsf{B}_{i}\neg\varphi$

"it is possible for *i* that φ "

B N A B N

• 3 possible *doxastic attitudes* w.r.t. a formula φ :

$$\mathsf{B}_i\,\varphi\qquad\qquad \hat{\mathsf{B}}_i\,\varphi\wedge\hat{\mathsf{B}}_i\,\neg\varphi\qquad\qquad \mathsf{B}_i\,\neg\varphi$$

• for φ contingent and non-doxastic

• 3 possible *doxastic attitudes* w.r.t. a formula φ :

$$\mathsf{B}_i\,\varphi\qquad\qquad \hat{\mathsf{B}}_i\,\varphi\wedge\hat{\mathsf{B}}_i\,\neg\varphi\qquad\qquad \mathsf{B}_i\,\neg\varphi$$

- for φ contingent and non-doxastic
- 6 possible *doxastic situations* w.r.t. a formula φ :

$\varphi \wedge B_i \varphi$	$arphi \wedge \hat{B}_i arphi \wedge \hat{B}_i \neg arphi$	$\varphi \wedge B_i \neg \varphi$
$\neg \varphi \wedge B_i \varphi$	$ eg arphi \wedge \hat{B}_i arphi \wedge \hat{B}_i \neg arphi$	$\neg \varphi \wedge B_i \neg \varphi$

• for φ contingent and non-doxastic

Multiagent doxastic logic KD45_n Doxastic logic: introduction and lan Doxastic logic: semantics Downstic logic: semantics

Doxastic logic: axiomatics

2 Discussions

3 Dynamics of belief

-

- belief explained in terms of possible worlds [Hin62, FHMV95]:
 - $B_i \varphi$ = "agent *i* believes that φ "
 - = " φ true in every world that is compatible with i's beliefs"

B N A B N

• belief explained in terms of possible worlds [Hin62, FHMV95]:

- $B_i \varphi$ = "agent *i* believes that φ "
 - = " φ true in every world that is compatible with i's beliefs"

• *KD*45_{*n*}-model $M = \langle W, B, V \rangle$ where:

- W nonempty set
- $V: Atms \longrightarrow 2^{W}$ 'valuation'
- \mathcal{B} : *Agts* $\longrightarrow 2^{W \times W}$ such that for every $i \in Agts$:
 - ★ for every *w* there is some *w*' such that $\langle w, w' \rangle \in B_i$
 - ★ if $\langle w, w' \rangle \in \mathcal{B}_i$ and $\langle w', w'' \rangle \in \mathcal{B}_i$ then $\langle w, w'' \rangle \in \mathcal{B}_i$
 - ★ if $\langle w, w' \rangle \in B_i$ and $\langle w, w'' \rangle \in B_i$ then $\langle w', w'' \rangle \in B_i$

(serial)

(transitive)

(Euclidian)

Doxastic logic: semantics (ctd.)

$$\mathcal{B}_i(w) = \{w' : \langle w, w' \rangle \in \mathcal{B}_i\}$$

- = *i*'s alternatives to *w*
- = worlds *i* cannot distinguish from *w* on basis of his beliefs
- = set of worlds compatible with *i*'s beliefs
- = belief state of agent i at w
- \mathcal{B}_i serial $\Leftrightarrow \mathcal{B}_i(w) \neq \emptyset$
- \mathcal{B}_i transitive + Euclidian \Leftrightarrow if $w' \in \mathcal{B}_i(w)$ then $\mathcal{B}_i(w) = \mathcal{B}_i(w')$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$\mathcal{B}_i(w) = \{w' : \langle w, w' \rangle \in \mathcal{B}_i\}$$

- i's alternatives to w
- = worlds *i* cannot distinguish from *w* on basis of his beliefs
- = set of worlds compatible with i's beliefs
- = belief state of agent i at w
- \mathcal{B}_i serial $\Leftrightarrow \mathcal{B}_i(w) \neq \emptyset$
- \mathcal{B}_i transitive + Euclidian \Leftrightarrow if $w' \in \mathcal{B}_i(w)$ then $\mathcal{B}_i(w) = \mathcal{B}_i(w')$
- truth condition:
 - $M, w \Vdash \mathsf{B}_i \varphi$ iff $M, w' \Vdash \varphi$ for every $w' \in \mathcal{B}_i(w)$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Doxastic logic: semantics (ctd.)

 variant of the muddy children puzzle: child 1 wrongly believes it is not muddy

 $\mathcal{B}_1(m_1m_2) = \{(m_2)\}$

Doxastic logic: semantics (ctd.)

 variant of the muddy children puzzle: child 1 wrongly believes it is not muddy

 $\mathcal{B}_1(m_1m_2) = \{(m_2)\}$

 $M, (m_1 m_2) \Vdash m_1 \land \mathsf{B}_1 \neg m_1$

Multiagent doxastic logic KD45_n

- Doxastic logic: introduction and language
- Doxastic logic: semantics
- Doxastic logic: axiomatics

Discussions

3 Dynamics of belief

standard multiagent logic of belief = multimodal KD45_n

- principles of multimodal K:
 - * principles of classical propositional logic
 - ★ $(\mathsf{B}_i \varphi \land \mathsf{B}_i \psi) \to \mathsf{B}_i (\varphi \land \psi)$
 - ★ from $\varphi \rightarrow \psi$ infer $\mathsf{B}_i \varphi \rightarrow \mathsf{B}_i \psi$
- consistency of belief:
 - * $\neg(\mathsf{B}_i \varphi \land \mathsf{B}_i \neg \varphi)$ axiom $\mathsf{D}(\mathsf{B}_i)$
- positive introspection:
 - ★ $B_i \varphi \rightarrow B_i B_i \varphi$ axiom 4(B_i)
- negative introspection:
 - * $\neg B_i \varphi \rightarrow B_i \neg B_i \varphi$ axiom 5(B_i)

3

- sound and complete: $\vdash_{KD45_n} \varphi$ iff $\models_{KD45_n} \varphi$
- decidable
- complexity of *KD*45_n-satisfiability:
 - NP-complete if card(Agts) = 1
 - PSPACE-complete if card(Agts) > 1
- normal form if n = 1: modal depth ≤ 1

Multiagent doxastic logic *KD*45_n

Discussions

Discussion: omniscience

- Discussion: graded belief
- Discussion: relation between belief and knowledge
- Discussion: belief vs. acceptance

Dynamics of belief

Omniscience problem

belief set of *i* at w = set of formulas believed by *i* at $w = \{\varphi : M, w \Vdash B_i \varphi\}$ = set of formulas true at every world of $\mathcal{B}_i(w)$

- in $KD45_n$, *i*'s belief set is...
 - closed under theorems:

$$\frac{\varphi}{\mathsf{B}_{i}\varphi}$$

closed under logical implication:

$$\frac{\varphi \rightarrow \psi}{\mathsf{B}_i \, \varphi \rightarrow \mathsf{B}_i \, \psi} \qquad \qquad \mathsf{rule} \; \mathsf{RM}(\mathsf{B}_i$$

closed under material implication:

$$(\mathsf{B}_i \varphi \land \mathsf{B}_i (\varphi \to \psi)) \to \mathsf{B}_i \psi$$
 axiom $\mathsf{K}(\mathsf{B}_i)$

- \Rightarrow omniscience problem
- KD45_n's belief is an idealization: rational agent, perfect reasoner
 - inadequate for human agents
 - widely accepted in AI

ч

rule $RN(B_i)$

Multiagent doxastic logic *KD*45_n

Discussions

- Discussion: omniscience
- Discussion: graded belief
- Discussion: relation between belief and knowledge
- Discussion: belief vs. acceptance

3 Dynamics of belief

language: B_i ≥d φ = "i believes φ with degree at least d" (d ∈ [0, 1])
 semantics:

э

language: B_i ≥^dφ = "i believes φ with degree at least d" (d ∈ [0, 1])
semantics: M = ⟨W, B, V⟩ where

•
$$\mathcal{B} : (Agts \times [0, 1]) \longrightarrow (W \times W)$$
 such that $\mathcal{B}_i^{\geq d} \subseteq \mathcal{B}_i^{\geq d+d'}$

'system of spheres'

 $w\mathcal{B}_i^{\geq d}v =$ "for *i*, at *w* world *v* has degree of possibility at least *d*" • axiomatics:

イロト イヨト イヨト イヨト

language: B_i ≥d φ = "i believes φ with degree at least d" (d ∈ [0, 1])
semantics: M = ⟨W, B, V⟩ where

•
$$\mathcal{B} : (Agts \times [0, 1]) \longrightarrow (W \times W)$$
 such that $\mathcal{B}_i^{\geq d} \subseteq \mathcal{B}_i^{\geq d+d'}$

'system of spheres'

 $w\mathcal{B}_i^{\geq d}v =$ "for *i*, at *w* world *v* has degree of possibility at least *d*" • axiomatics:

•
$$KD45(B_i \ge d)$$
, for every *i* and *d*

•
$$\mathsf{B}_i^{\geq d} \varphi \to \mathsf{B}_i^{\geq d'} \varphi$$
 if $d \geq d'$

イロト イヨト イヨト イヨト

Multiagent doxastic logic *KD*45_n

Discussions

- Discussion: omniscience
- Discussion: graded belief

• Discussion: relation between belief and knowledge

Discussion: belief vs. acceptance

3 Dynamics of belief

Can knowledge be defined from belief?

[Plato, Theaetetus]

•
$$\mathsf{K}_i \varphi \stackrel{\mathsf{def}}{=} \mathsf{B}_i \varphi \wedge \varphi$$

< ロ > < 同 > < 回 > < 回 >

Can knowledge be defined from belief?

[Plato, Theaetetus]

•
$$\mathsf{K}_i \varphi \stackrel{\mathsf{def}}{=} \mathsf{B}_i \varphi \wedge \varphi$$

problem: 'knowledge by accident'

•
$$\mathsf{K}_{i}\varphi \stackrel{\mathsf{def}}{=} \mathsf{B}_{i}\varphi \wedge \varphi \wedge hasJustif(i,\varphi)$$

< ロ > < 同 > < 回 > < 回 >

Can knowledge be defined from belief?

[Plato, Theaetetus]

•
$$\mathsf{K}_i \varphi \stackrel{\mathsf{def}}{=} \mathsf{B}_i \varphi \wedge \varphi$$

problem: 'knowledge by accident'

•
$$\mathsf{K}_i \varphi \stackrel{\mathsf{def}}{=} \mathsf{B}_i \varphi \wedge \varphi \wedge \mathsf{hasJustif}(i, \varphi)$$

- problem: what is a justification?
- Gettier Problem [1963]:
 - * suppose a logic of belief and justification such that

$$\varphi \rightarrow \psi$$

hasJustif $(i, \varphi) \rightarrow$ hasJustif (i, ψ)

- * suppose *i* wrongly believes *p*, but has some justification for that: $\neg p \land B_i p \land hasJustif(i, p)$
- ★ ... hence *i* believes that $p \lor q$ and *i* believes that $p \lor \neg q$

(by axiom M(B_i))

* ... and *hasJustif*(i, ($p \lor q$)) and *hasJustif*(i, ($p \lor \neg q$))

(use inference rule for hasJustif)

(I) > (A) > (A) > (A) > (A)

* ... and either *i* knows that $p \lor q$, or *i* knows that $p \lor \neg q$, for any q: $\models B_i p \land hasJustif(i, p) \rightarrow (K_i (p \lor q) \lor K_i (p \lor \neg q))$

Relation between knowledge and belief?

• suppose a logic of knowledge and belief defined as:

- KD45(B_i)
- ► *S*5(K_i)
- $\mathsf{K}_i \varphi \to \mathsf{B}_i \varphi$
- $\blacktriangleright \ \mathsf{B}_i \, \varphi \to \mathsf{B}_i \, \mathsf{K}_i \, \varphi$

('knowledge implies belief'; \neq natural language use)

A D M A A A M M

A B F A B F

Relation between knowledge and belief?

- suppose a logic of knowledge and belief defined as:
 - KD45(B_i)
 - ► *S*5(K_i)
 - K_i φ → B_i φ ('knowledge implies belief'; ≠ natural language use)
 B_i φ → B_i K_i φ
- ... but implies that $B_i \varphi \leftrightarrow K_i \varphi!$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Relation between knowledge and belief?

- suppose a logic of knowledge and belief defined as:
 - *KD*45(B_i)
 - $S5(K_i)$ • $K_i \varphi \rightarrow B_i \varphi$
 - K_iφ → B_iφ ('knowledge implies belief'; ≠ natural language use)
 B_iφ → B_iK_iφ
- ... but implies that $B_i \varphi \leftrightarrow K_i \varphi$!
 - intermediate step: $\neg B_i \neg K_i \varphi \rightarrow \neg K_i \neg B_i \varphi$

Relation between knowledge and belief?

- suppose a logic of knowledge and belief defined as:
 - KD45(B_i)
 - ► *S*5(K_i)
 - K_i φ → B_i φ ('knowledge implies belief'; ≠ natural language use)
 B_i φ → B_i K_i φ
- ... but implies that $B_i \varphi \leftrightarrow K_i \varphi!$
 - intermediate step: $\neg B_i \neg K_i \varphi \rightarrow \neg K_i \neg B_i \varphi$
- culprit: negative introspection for knowledge [Len78, Len95]

Multiagent doxastic logic *KD*45_n

Discussions

- Discussion: omniscience
- Discussion: graded belief
- Discussion: relation between belief and knowledge
- Discussion: belief vs. acceptance

Dynamics of belief

- A lawyer might *accept* that his client is innocent, while privately believing that his client is guilty.
- distinguishing features [Eng98, Hak06]:
 - Beliefs are not subject to the agent's will, whereas acceptances are voluntary.
 - Beliefs aim at truth, acceptances aim at utility (they depend on goals).
 - Beliefs are shaped by evidence, whereas acceptances need not be.
 - Beliefs come in degrees, while acceptances are binary.
 - Beliefs are context-independent whereas acceptances depend on context.
- logic of acceptance: see Thursday lecture on collective attitudes

Dynamics of belief

A. Herzig & E. Lorini ()

Intentionality: belief

Bordeaux, July 2009 25 / 40

< 回 > < 回 > < 回 >

Multiagent doxastic logic *KD*45_n

Discussions

Oynamics of belief

• Dynamics of belief: introduction and motivation

Dynamics of belief: the AGM theory

4 3 5 4 3

- how do i's beliefs evolve when i learns that φ is true?
- extend KD45_n by public announcement operator [φ!]
 - what if agent *i* wrongly believes that *p*, and $\neg p$ is announced?
 - ► can't be the case in epistemic logic: $\vdash_{S5_n-PAL} K_i p \rightarrow [\neg p!] \bot$
 - ★ proof:

$$\vdash_{S5_n} \kappa_i \rho o
ho \ +_{S5_n - PAL} \rho \leftrightarrow [\neg \rho!]_{-}$$

(reduction axiom)

- in doxastic logic:
 - ★ $B_i p \land \neg p$ is *KD*45_n satisfiable
 - $\star \vdash_{\mathit{KD45}_n-\mathit{PAL}} p \leftrightarrow [\neg p!] \bot$

(reduction axiom)

★ $B_i p \land \neg [\neg p!] \bot$ should be *KD*45_n-*PAL* satisfiable!

• exercise: prove $\vdash_{KD45_n-PAL} (\neg p \land B_i p) \rightarrow \langle \neg p! \rangle B_i \perp$

• exercise: prove $\vdash_{KD45_n-PAL} (\neg p \land B_i p) \rightarrow \langle \neg p! \rangle B_i \perp$ • $\neg p \rightarrow \langle \neg p! \rangle \top$ (red.ax.)

3

• exercise: prove $\vdash_{KD45_n-PAL} (\neg p \land B_i p) \rightarrow \langle \neg p! \rangle B_i \perp$ • $\neg p \rightarrow \langle \neg p! \rangle \top$ (red.ax.) • reduction: $[\neg p!]B_i \neg p$ * reduction: $[\neg p!]B_i \neg p \rightarrow B_i [\neg p!] \neg p$ $\leftrightarrow \neg p \rightarrow B_i (\neg p \rightarrow \neg p)$ $\leftrightarrow \neg p \rightarrow B_i \top$ $\leftrightarrow \neg p \rightarrow T$

• exercise: prove $\vdash_{KD45_n-PAL} (\neg p \land B_i p) \rightarrow \langle \neg p! \rangle B_i \perp$ $\bigcirc \neg p \rightarrow \langle \neg p! \rangle \top$ (red.ax.) $\bigcirc [\neg p!] \mathsf{B}_i \neg p$ ★ reduction: $[\neg p!]B_i \neg p \quad \leftrightarrow \quad \neg p \rightarrow B_i [\neg p!] \neg p$ $\leftrightarrow \neg p \rightarrow \mathsf{B}_i (\neg p \rightarrow \neg p)$ $\leftrightarrow \neg p \rightarrow B_i \top$ $\leftrightarrow \neg p \rightarrow \top$ $\leftrightarrow \top$ $B_i p \rightarrow [\neg p!] B_i p$ ★ reduction: $[\neg p!]B_i p \leftrightarrow \neg p \rightarrow B_i [\neg p!]p$ $\leftrightarrow \neg p \rightarrow \mathsf{B}_i (\neg p \rightarrow p)$ $\leftrightarrow \neg p \rightarrow B_i p$

• exercise: prove $\vdash_{KD45_n-PAL} (\neg p \land B_i p) \rightarrow \langle \neg p! \rangle B_i \perp$ $\bigcirc \neg p \rightarrow \langle \neg p! \rangle \top$ (red.ax.) $\bigcirc [\neg p!] \mathsf{B}_i \neg p$ ★ reduction: $[\neg p!]B_i \neg p \quad \leftrightarrow \quad \neg p \rightarrow B_i [\neg p!] \neg p$ $\leftrightarrow \neg p \rightarrow \mathsf{B}_i (\neg p \rightarrow \neg p)$ $\leftrightarrow \neg p \rightarrow B_i \top$ \leftrightarrow $\neg p \rightarrow \top$ $\leftrightarrow \top$ $B_i p \rightarrow [\neg p!] B_i p$ ★ reduction: $[\neg p!]B_i p \quad \leftrightarrow \quad \neg p \rightarrow B_i [\neg p!]p$ $\leftrightarrow \neg p \rightarrow B_i (\neg p \rightarrow p)$ $\leftrightarrow \neg p \rightarrow B_i p$ $(\neg p \land B_i p) \rightarrow \langle \neg p! \rangle (B_i p \land B_i \neg p)$ (from 1,2,3)

- ways out:
 - drop seriality: beliefs might get inconsistent modify truth condition for appouncements

modify truth condition for announcements $M, w \Vdash [\varphi!] \psi$ iff $M, w \nvDash \varphi$ or $(M, w \Vdash \hat{B}_i \varphi \text{ and } M^{\varphi!}, w \Vdash \psi)$, or $(M, w \Vdash B_i \neg \varphi \text{ and } M, w \Vdash \psi)$

B N A B N

ways out:

- drop seriality: beliefs might get inconsistent
 modify truth condition for announcements
 - $M, w \Vdash [\varphi!] \psi \quad \text{iff} \quad M, w \nvDash \varphi \text{ or} \\ (M, w \Vdash \hat{\mathsf{B}}_i \varphi \text{ and } M^{\varphi!}, w \Vdash \psi), \text{ or} \\ (M, w \Vdash B_i \neg \varphi \text{ and } M, w \Vdash \psi)$
 - reduction axiom:

 $[\varphi!] \mathsf{B}_i \psi \quad \leftrightarrow \quad \neg \varphi \lor (\hat{\mathsf{B}}_i \varphi \land \mathsf{B}_i [\varphi!] \psi) \lor (\mathsf{B}_i \neg \varphi \land \mathsf{B}_i \psi)$ * believe-contravening input is rejected

ways out:

- drop seriality: beliefs might get inconsistent
 modify truth condition for announcements
 - $\begin{array}{ll} M, w \Vdash [\varphi!]\psi & \text{iff} & M, w \nvDash \varphi \text{ or} \\ & (M, w \Vdash \hat{\mathbb{B}}_i \varphi \text{ and } M^{\varphi!}, w \Vdash \psi), \text{ or} \\ & (M, w \Vdash \hat{\mathbb{B}}_i \neg \varphi \text{ and } M, w \Vdash \psi) \end{array}$
 - reduction axiom:

 $[\varphi!]\mathsf{B}_{i}\psi \quad \leftrightarrow \quad \neg\varphi \lor (\hat{\mathsf{B}}_{i}\varphi \land \mathsf{B}_{i}[\varphi!]\psi) \lor (\mathsf{B}_{i}\neg\varphi \land \mathsf{B}_{i}\psi)$

- believe-contravening input is rejected
- integrate belief revision mechanisms

Multiagent doxastic logic *KD*45_n

Discussions

Oynamics of belief

- Dynamics of belief: introduction and motivation
- Dynamics of belief: the AGM theory

< A

AGM theory: the internal perspective

beliefs of an agent = set of Boolean formulas $S \subseteq \mathcal{L}_{CPL}$

- $\varphi \in S$ = " φ believed by the agent"
- internal perspective (S is 'in the agent's head')
- \neq external perspective:
 - $\varphi = "\varphi$ is (objectively) true"
 - taken in doxastic logic
- internal version of doxastic logic [Auc08]
 - distinguished agent Y ("you")
 - $\varphi = "Y$ believes that φ "
 - wanted: $\vdash \varphi \leftrightarrow \mathsf{B}_Y \varphi$
 - abandon inference rule of necessitation ("from φ infer B_i φ")

AGM theory: coherentism vs. foundationalism

beliefs of an agent = set of Boolean formulas $S \subseteq \mathcal{L}_{CPL}$

- foundational view: some beliefs are more basic than others
 - belief base (typically finite)
- coherentist view: all beliefs support each other
 - S closed under logical consequence: belief set
 - ★ omniscience problem (v.s.)
 - can be represented by a formula [KM92]
 - ★ logically equivalent formulas should be revised in the same way

AGM theory: belief change operations

- agent's beliefs = set of formulas:
 - $op: 2^{\mathcal{L}_{CPL}} \times \mathcal{L}_{CPL} \longrightarrow 2^{\mathcal{L}_{CPL}}$ [AGM85]
- agent's beliefs = formula:
 - ► $op : \mathcal{L}_{CPL} \times \mathcal{L}_{CPL} \longrightarrow \mathcal{L}_{CPL}$ [KM92]
 - require that when $\vdash \varphi_1 \leftrightarrow \varphi_2$ then $\vdash op(\varphi_1, \psi) \leftrightarrow op(\varphi_2, \psi)$
 - 'simulates' coherentist approach
- 3 kinds of operations op:
 - $\varphi + \psi$: expansion
 - $\varphi \psi$: contraction
 - $\varphi \star \psi$: revision

3

AGM theory: belief change operations (ctd.)

- expand φ by ψ : $\varphi + \psi =$ "add ψ without worrying about consistency"
 - desiderata:

$$\star \hspace{0.2cm} \varphi + \psi \hspace{0.2cm} \stackrel{\mathsf{def}}{=} \hspace{0.2cm} \varphi \wedge \psi$$

- contract φ by ψ : $\varphi - \psi =$ "weaken φ such that ψ no longer follows"
 - desiderata:

$$\begin{array}{ccc} \star & \varphi - \psi \not\vdash \psi \\ \star & \varphi \vdash \varphi - \psi \end{array}$$

revise φ by ψ:
 φ ★ ψ = "weaken φ such that ¬ψ no longer follows, and add ψ"
 desiderata:

The basic AGM postulates for belief revision

(R1)
$$\varphi \star \psi \vdash \psi$$

(R2) if $\varphi \not\vdash \neg \psi$ then $\vdash \varphi \star \psi \leftrightarrow \varphi \land \psi$
(R3) if $\varphi \star \psi \vdash \bot$ then $\psi \vdash \bot$
(R4) if $\vdash \varphi \leftrightarrow \varphi'$ and $\vdash \psi \leftrightarrow \psi'$ then $\vdash \varphi \star \psi \leftrightarrow \varphi' \star \psi'$
(R56) if $\varphi \star \psi_1 \not\vdash \neg \psi_2$ then $\vdash \varphi \star (\psi_1 \land \psi_2) \leftrightarrow (\varphi \star \psi_1) \land \psi_2$
generalizes (R2)

N.B.: *postulate* \neq axiom: may use metalanguage ("if $\varphi \not\vdash \neg \psi \dots$ ")

AGM theory: semantics

• model = sphere system: set of centered *spheres* surrounding $\|\varphi\|$

[Grove], inspired from conditional logics [Lew73]

- ► $\|\varphi\| = \{w : w \Vdash \varphi\}$ = extension of φ (*w* = interpretation of *CPL*)
- total preorder \leq_{φ} , for every formula φ

* $w_1 \approx_{\varphi} w_2$ iff $w_1 <_{\varphi} w_2$ and $w_2 <_{\varphi} w_1$

• \leq_{φ} centered around $\|\varphi\|$:

★ if $w_1 \Vdash \varphi$ and $w_2 \Vdash \varphi$ then $w_1 \approx_{\varphi} w_2$

- ★ if $w_1 \Vdash \varphi$ and $w_2 \nvDash \varphi$ then $w_1 <_{\varphi} w_2$
- insensitive to syntax:

 $\star \ \text{ if } \vdash \varphi \leftrightarrow \varphi' \ \text{ then } \leq_{\varphi} = \leq_{\varphi'}$

A. Herzig & E. Lorini ()

AGM theory: semantics

• model = sphere system: set of centered *spheres* surrounding $\|\varphi\|$

[Grove], inspired from conditional logics [Lew73]

- ▶ $\|\varphi\| = \{w : w \Vdash \varphi\}$ = extension of φ (*w* = interpretation of *CPL*)
- total preorder \leq_{φ} , for every formula φ

 \star $w_1 \approx_{\varphi} w_2$ iff $w_1 <_{\varphi} w_2$ and $w_2 <_{\varphi} w_1$

- $\blacktriangleright \leq_{\varphi}$ centered around $\|\varphi\|$:
 - **★** if $w_1 \Vdash \varphi$ and $w_2 \Vdash \varphi$ then $w_1 \approx_{\varphi} w_2$
 - ***** if $w_1 \Vdash \varphi$ and $w_2 \nvDash \varphi$ then $w_1 <_{\varphi} w_2$
- insensitive to syntax:

 \star if $\vdash \varphi \leftrightarrow \varphi'$ then $\leq_{\varphi} = \leq_{\varphi'}$

• \leq defines a revision operation:

 $\|\varphi \star_{\leq} \psi\| = \min_{\leq_{\alpha}} \|\psi\|$

AGM theory: representation theorem

• representation theorem:

let $\star : \mathcal{L}_{CPL} \times \mathcal{L}_{CPL} \longrightarrow \mathcal{L}_{CPL}$ be any mapping; \star satisfies the (extended) AGM postulates iff

there is a family of total preorders \leq_{φ} , one for every φ , centered around $\|\varphi\|$ and insensitive to syntax, s.th. $\|\varphi \star \langle \psi\| = \min_{\langle_{\varphi}} \|\psi\|$

AGM theory: representation theorem

• representation theorem:

let $\star : \mathcal{L}_{CPL} \times \mathcal{L}_{CPL} \longrightarrow \mathcal{L}_{CPL}$ be any mapping; \star satisfies the (extended) AGM postulates iff there is a family of total preorders \leq_{φ} , one for every φ , centered around $\|\varphi\|$ and insensitive to syntax, s.th. $\|\varphi \star_{\leq} \psi\| = \min_{\leq_{\varphi}} \|\psi\|$

other semantics:

partial meet contraction [AGM85]

$$\bigstar \ \ \mathcal{S} \bot \psi = \{ \mathcal{S}' \subseteq \mathcal{S} \ : \ \mathcal{S} \not\vdash \psi \}$$

$$\star \quad S \star \psi = \gamma(S \bot \neg \psi) + \psi$$

- epistemic entrenchment orderings < on formulas [Gär88]
 - constraints on ordering: ...
 - relation with possibility theory [Zadeh, Dubois and Prade]
- ▶ ...
- Spohn's ordinal conditional functions [Spo88]
 - numerical version of sphere systems

AGM theory: integrations with doxastic logic

- "Two traditions in the logic of belief: bringing them together" [Seg95, Seg99]
 - modal operators B_i , $[+\psi]$, $[-\psi]$, $[\star\psi]$
 - [★ψ]φ = "φ is true after revision by ψ"
- internal version of doxastic logic [Auc08]
 - straightforward transfer of AGM representation theorems to multiagent case
- distinguish several versions of belief [Baltag and Smets 07, 08]
 - soft beliefs: can be revised
 - hard beliefs: cannot
 - ESSLLI course "Dynamic Logics for Interactive Belief Revision" (Baltag and Smets, 2nd week)

- standard logic of belief: KD45_n
 - criticisms: omniscience
 - static
- dynamics of belief
 - belief revision

3 → 4 3

• logic of choice, goals and intentions

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Carlos Alchourrón, Peter Gärdenfors, and David Makinson. On the logic of theory change: Partial meet contraction and revision functions.

J. of Symbolic Logic, 50:510–530, 1985.

Guillaume Aucher.

Perspectives on belief and change. PhD thesis, Université de Toulouse, July 2008.

Pascal Engel.

Believing, holding true, and accepting.

Philosophical Explorations, 1(2):140–151, 1998.

Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi. *Reasoning about knowledge*. MIT Press, 1995.

Peter Gärdenfors.

Knowledge in Flux: Modeling the Dynamics of Epistemic States. MIT Press, 1988.

Raul Hakli.

Group beliefs and the distinction between belief and acceptance.

Cognitive Systems Research, 7:286–297, 2006.

A. Herzig & E. Lorini ()

Intentionality: belief

Jaakko K. K. Hintikka.

Knowledge and belief.

Cornell University Press, Ithaca, N.Y., 1962.

Hirofumi Katsuno and Alberto O. Mendelzon.

On the difference between updating a knowledge base and revising it.

In Peter Gärdenfors, editor, *Belief revision*, pages 183–203. Cambridge University Press, 1992.

(preliminary version in Allen, J.A., Fikes, R., and Sandewall, E., eds., Principles of Knowledge Representation and Reasoning: Proc. 2nd Int. Conf., pages 387–394. Morgan Kaufmann Publishers, 1991).

Wolfgang Lenzen.

Recent work in epistemic logic.

North Holland Publishing Company, Amsterdam, 1978.

Wolfgang Lenzen.

On the semantics and pragmatics of epistemic attitudes.

In Armin Laux and Heinrich Wansing, editors, *Knowledge and belief in philosophy and AI*, pages 181–197. Akademie Verlag, Berlin, 1995.

David Lewis.

Counterfactuals.

A. Herzig & E. Lorini ()

3

< 日 > < 同 > < 回 > < 回 > < □ > <

Basil Blackwell, Oxford, 1973.

Krister Segerberg.

Belief revision from the point of view of doxastic logic.

Bulletin of the IGPL, 3:534–553, 1995.

Krister Segerberg.

Two traditions in the logic of belief: bringing them together.

In Hans Jürgen Ohlbach and Uwe Reyle, editors, *Logic, Language and Reasoning: essays in honour of Dov Gabbay*, volume 5 of *Trends in Logic*, pages 135–147. Kluwer Academic Publishers, Dordrecht, 1999.

Wolfgang Spohn.

Ordinal conditional functions: a dynamic theory of epistemic states.

In William L. Harper and Brian Skyrms, editors, *Causation in decision, belief change and statistics*, volume 2, pages 105–134. D. Reidel, Dordrecht, 1988.