"Individual and collective intentionality" Introductory course @ ESSLLI'09

Andreas Herzig and Emiliano Lorini
IRIT-CNRS, University of Toulouse, France

```
www.irit.fr/~Andreas.Herzig/Esslli09course
    herzig@irit.fr,lorini@irit.fr
```

Bordeaux, July 2009

Introduction to the course

Agents and mental states

- agents in interaction: physical vs. mental fact [Brentano]
- concept of mental state of an agent
- philosophy (philosophy of mind, epistemology)
- psychology
- economics
- computer science (MAS, AI, distributed systems)
- many kinds of mental states of an individual i :
- i is angry; is sad; ...
* no argument (moods, needs)
- i loves individual j; hates individual k; ...
* argument = object
- i is angry that p; believes that p; has goal that $\neg p$; admires j for having brought about $p ; \ldots$
\star argument $=$ proposition

Intentionality

- intentional mental state $=$ mental states that are about something [Brentano, Searle]
- about an object
- about a proposition [Anscombe]
- two kinds of 'being about a proposition'
- informational mental states:
\star knowledge
* beliefs
\star acceptance (\neq belief)
- motivational (proactive, teleological) mental states:
\star desires
* preferences
* goals
\star standards, values (internalized norms)
* future-directed intentions
* present-directed intentions (plans)

Collective intentionality

- examples:
- "The team believes it will win today's game."
- "The British believe that the Euro will eventually be introduced in the UK."
- "The United States believe that those responsible for these dreadful acts must be punished."
- "The Communist Party of Ruritania believes that capitalist countries will soon perish (but none of its members really believes so)."
- "Microsoft intends to strengthen its position in the market."
- collective mind? collective consciousness?
- metaphorical
- 'intentional stance': ascribe mental attitudes to groups [Davidson, Dennett]
* Microsoft's attempt to take over Yahoo can be explained by Microsoft's desire to strengthen its position in the market, and Microsoft's belief that it is able to buy Yahoo

Individual attitudes: the issues

- how represented in the agent's mind?
- language of thought [Fodor]
- which informational attitudes?
- knowledge, belief, acceptance
* knowledge implies truth, belief doesn't
\star knowledge that $\varphi=($ belief that $\varphi) \wedge \varphi \wedge \ldots$
- which logical principles?
* omniscience problem
- which proactive attitudes ?
- desires, preferences, goals, intentions
\star desires primitive?
\star conscious?
- can be formalized in logic?
- which dynamics?
- mental attitudes trigger actions
- (perception of) events triggers change of mental attitudes

Collective attitudes: the issues

- status?
- exist, or just ascribed?
- for any set of agents, or just for constituted groups?
- reducible to individual attitudes?
- which informational attitudes?
- shared knowledge, shared belief
- distributed knowledge, distributed belief
- common knowledge, common belief ('mutual belief')
- group acceptance
* group: more than a set of agents
- which proactive attitudes?
- collective actions, plans, strategies
* parallel (independence) vs. joint (moving a piano)
- collective goals and intentions ('we-intentions', 'teamwork')
- which dynamics?
- results from dynamics of individual attitudes?

Related @ ESSLLI 2009

- Week 1
- "Logical Methods for Social Concepts"
* workshop, A. Herzig and E. Lorini
- "Games, Actions and Social Software"
* introductory course, R. Verbrugge and J. van Eijck
- Week 2
- "Logics of Rational Agency"
* foundational course, E. Pacuit
- "Logic and Agent Programming Languages"
* introductory course, N. Alechina and B. Logan
- "Dynamic Logics for Interactive Belief Revision"
* advanced course, A. Baltag and S. Smets

Course overview

Monday
epistemic logic and its dynamics
Tuesday
doxastic logic and its dynamics
Wednesday logic of goals and intentions
Thursday common belief, group belief and group acceptance
Friday
group action, group intention

Monday: Epistemic logics and the dynamics of knowledge

Plan

(1) Multiagent epistemic logic $S 5_{n}$

- Introduction
- Language
- Semantics
- Axiomatics
(2) Discussions
(3) Public announcement logic $P A L$

4 Dynamic epistemic logic $D E L$

Reasoning about knowledge: de dicto vs. de re

(1) "there are irrational x and y such that x^{y} is rational"
(2) "Hilbert knows that there are irrational x, y such that x^{y} is rational"
(3) "there are irrational x, y such that Hilbert knows that x^{y} is rational"

- write these statements in the language of logic
- abbreviate $\neg \operatorname{Rat}(x) \wedge \neg \operatorname{Rat}(y) \wedge \operatorname{Rat}\left(x^{y}\right)$ by $P(x, y)$

Reasoning about knowledge: de dicto vs. de re

(1) "there are irrational x and y such that x^{y} is rational"
(2) "Hilbert knows that there are irrational x, y such that x^{y} is rational"
(3) "there are irrational x, y such that Hilbert knows that x^{y} is rational"

- write these statements in the language of logic
- abbreviate $\neg \operatorname{Rat}(x) \wedge \neg \operatorname{Rat}(y) \wedge \operatorname{Rat}\left(x^{y}\right)$ by $P(x, y)$
- it follows from the axioms of Peano Arithmetic that $\exists x \exists y P(x, y)$
- non-constructive proof (5 lines)
- Hilbert knew Peano Arithmetic
- Hilbert knew that $\exists x \exists y P(x, y)$
- there are no x, y of which Hilbert knew that $P(x, y)$
- although there is a constructive proof (~ 20 pages, ~ 1950)
- Hilbert was not a perfect, 'omniscient' reasoner

Reasoning about knowledge: muddy children

a famous puzzle:

1. two children come back from the garden, both with mud on their forehead; their father looks at them and says:
"at least one of you has mud on his forehead" then he asks:
"those who know whether they are dirty, step forward!"
2. nobody steps forward
3. the father asks again:
"those who know whether they are dirty, step forward!"
4. both simultaneously answer: "I know!"
N.B.: can be generalized to an arbitrary number $n \geq 2$ of children

Reasoning about knowledge: muddy children

- use (second-order) predicate $\operatorname{Knows}(i, \varphi)$, where $i \in\{1,2\}$
- Knows $(i, \varphi)=$ "agent i knows that φ "
- some of child 2's knowledge at the different stages:
(SO) background knowledge:
$\operatorname{Knows}\left(2, \operatorname{Knows}\left(1, m_{2}\right) \vee \operatorname{Knows}\left(1, \neg m_{2}\right)\right)$
equivalently:
$\operatorname{Knows}\left(2, \neg \operatorname{Knows}\left(1, \neg m_{2}\right) \rightarrow \operatorname{Knows}\left(1, m_{2}\right)\right)$
(S1) learns that at least one of them has mud on his forehead:
$\operatorname{Knows}\left(2, \operatorname{Knows}\left(1,\left(m_{1} \vee m_{2}\right)\right)\right)$
(S2) child 2 does not respond:
$\operatorname{Knows}\left(2, \neg \operatorname{Knows}\left(1, m_{1}\right)\right)$
(S3) should follow from (S0)-(S2):
Knows $\left(2, m_{2}\right)$
- proof?

Reasoning about knowledge: muddy children

deduction of (S3) from (S0), (S1), (S2):

1. $\operatorname{Knows}\left(2, \operatorname{Knows}\left(1,\left(m_{1} \vee m_{2}\right)\right)\right)$
hyp. (S1)
2. $\operatorname{Knows}\left(2, \operatorname{Knows}\left(1, \neg m_{2}\right) \rightarrow \operatorname{Knows}\left(1, m_{1}\right)\right)$
conseq. of 1.
3. $\operatorname{Knows}\left(2, \neg \operatorname{Knows}\left(1, m_{1}\right) \rightarrow \neg \operatorname{Knows}\left(1, \neg m_{2}\right)\right)$
equiv. to 2.
4. $\operatorname{Knows}\left(2, \neg \operatorname{Knows}\left(1, m_{1}\right)\right)$ hyp. (S2)
5. $\operatorname{Knows}\left(2, \neg \operatorname{Knows}\left(1, \neg m_{2}\right)\right)$
from 3. and 4.
6. $\operatorname{Knows}\left(2, \neg \operatorname{Knows}\left(1, \neg m_{2}\right) \rightarrow \operatorname{Knows}\left(1, m_{2}\right)\right) \quad$ equiv. to hyp. (S0)
7. $K n o w s\left(2, K n o w s\left(1, m_{2}\right)\right)$
8. $K n o w s\left(2, m_{2}\right)$
from 7., bec. $\operatorname{Knows}\left(1, m_{2}\right) \rightarrow m_{2}$
('knowledge implies truth')
informal deduction \Rightarrow formal rules $? \Rightarrow$ deduction in a formal logic?

A second-order theory of the Knows predicate

- desirable principles:
- $\forall i \forall p(K \operatorname{nows}(i, p) \rightarrow p)$
\star used in step 8.
- $\forall i \forall p \forall q((\operatorname{Knows}(i, p \vee q) \wedge \operatorname{Knows}(i, \neg p)) \rightarrow \operatorname{Knows}(i, q))$
\star used in step 2.
- make up theory of knowledge $\mathcal{T}_{\text {Knows }}$
- second-order formulas: " $\forall p$ " quantifies over propositions
- reasoning about knowledge in second-order logic (SOL):
- $T_{\text {Knows }} \vdash_{\text {SOL }}((S 0) \wedge(S 1) \wedge(S 2)) \rightarrow(S 3)$
- $S O L$ consequence problem
* undecidable...

Knows: from second-order to first-order logic

idea [Hin62, FHMV95]:

$\operatorname{Knows}(i, \varphi)=" \varphi$ true in all worlds that are possible for i "

- set of possible worlds W
- ternary 'accessibility' relation $\mathcal{K}\left(i, w_{1}, w_{2}\right)$
- $i=$ agent
- $w_{1}=$ actual world
- $w_{2}=$ world that i cannot distinguish from w_{1}
- in first-order logic:

$$
\begin{aligned}
\operatorname{Knows}(i, \varphi, w) & =\quad \text { "at } w, i \text { knows that } \varphi " \\
& \stackrel{\text { def }}{=} \quad \forall w^{\prime}\left(R\left(i, w, w^{\prime}\right) \rightarrow \varphi\left[w^{\prime}\right]\right)
\end{aligned}
$$

Knows: from second-order to first-order logic, ctd.

- muddy children:
- $\operatorname{Knows}\left(1, m_{2}, w\right)=\forall w^{\prime}\left(R\left(1, w, w^{\prime}\right) \rightarrow m_{2}\left(w^{\prime}\right)\right)$
- $\neg \operatorname{Knows}\left(1, m_{1}, w\right)=\exists w^{\prime}\left(R\left(1, w, w^{\prime}\right) \wedge \neg m_{1}\left(w^{\prime}\right)\right)$
- exercise: draw the set of possible worlds and the accessibility relation in the initial situation

Knows: from second-order to first-order logic, ctd.

- muddy children:
- $\operatorname{Knows}\left(1, m_{2}, w\right)=\forall w^{\prime}\left(R\left(1, w, w^{\prime}\right) \rightarrow m_{2}\left(w^{\prime}\right)\right)$
- $\neg \operatorname{Knows}\left(1, m_{1}, w\right)=\exists w^{\prime}\left(R\left(1, w, w^{\prime}\right) \wedge \neg m_{1}\left(w^{\prime}\right)\right)$
- exercise: draw the set of possible worlds and the accessibility relation in the initial situation

Knows: from second-order to first-order logic, ctd.

- desirable principles for knowledge \Rightarrow properties of \mathcal{K}
- $\forall i \forall p$ (Knows $(i, p) \rightarrow p$) corresponds to: $\forall i \forall w \mathcal{K}(i, w, w)$
- ...
- make up first-order theory $\mathcal{T}_{\text {Knows }}$
- reasoning about knowledge:
- $T_{\text {Knows }} \vdash_{F O L} \forall w(((S 0) \wedge(S 1) \wedge(S 2)) \rightarrow(S 3))[w]$
- consequence problem in first-order logic (FOL)
* semi-decidable ...

Knows: from first-order to modal logic

idea [Hin62]:

don't use first-order language, but add modal operators of knowledge to the language of classical propositional logic $C P L$

- K_{i} : modal operator
- $\mathrm{K}_{i} \varphi=" i$ knows that φ "
- epistemic logic
- episteme $=\epsilon \pi \iota \sigma \tau \eta \mu \eta=$ 'know' (Greek)
- N.B.:
- propositional language; no \forall, \exists
- φ might contain modal operator K_{j}
\star precise definition requires recursive definition of language

Epistemic language: examples

- knowing-whether:
- $\mathrm{K}_{1} m_{2} \vee \mathrm{~K}_{1} \neg m_{2}$
"child 1 knows whether m_{2} "
- ignorance:
- $\neg \mathrm{K}_{2} m_{2} \wedge \neg \mathrm{~K}_{2} \neg m_{2}$
"child 2 does not know whether m_{2} "
- nesting of modal operators ('higher-order knowledge'):
- $\mathrm{K}_{1} \mathrm{~K}_{2}\left(m_{1} \vee m_{2}\right)$
- $\mathrm{K}_{1} \mathrm{~K}_{2} \mathrm{~K}_{1}\left(m_{1} \vee m_{2}\right)$
- $\mathrm{K}_{2}\left(\mathrm{~K}_{1} m_{2} \vee \mathrm{~K}_{1} \neg m_{2}\right)$
- $\mathrm{K}_{2}\left(\neg \mathrm{~K}_{1} m_{1} \wedge\left(\mathrm{~K}_{1} m_{2} \vee \mathrm{~K}_{1} \neg m_{2}\right)\right)$

The propositional logic of knowledge

- extend $C P L$ by axiom schemas and inference rules for the modal operator K_{i}
- $\vdash \mathrm{K}_{i} \varphi \rightarrow \varphi$
- if $\vdash \varphi$ then $\vdash \mathrm{K}_{i} \varphi$
- reasoning about knowledge:
$-\vdash \mathrm{K}_{2} \mathrm{~K}_{1} m_{2} \rightarrow \mathrm{~K}_{2} m_{2}$
- $\vdash((S 0) \wedge(S 1) \wedge(S 2)) \rightarrow(S 3)$
- reasoning problem: given φ, do we have $\vdash \varphi$?
^ decidable!
* more details later ...

Reasoning in epistemic logic

- semantics: models? truth conditions?
- resort to first-order semantics in terms of possible worlds
- $M=\langle W, \mathcal{K}, V\rangle$ where
$\star W$ some set ('possible worlds')
$\star \mathcal{K}:$ Agts $\times W \times W$
$\star \quad V$ valuation
- truth conditions:
$\star M, w \Vdash \mathrm{~K}_{i} \varphi$ iff $M, w^{\prime} \Vdash \varphi$ for all w^{\prime} such that $\mathcal{K}\left(i, w, w^{\prime}\right)$
- N.B.: language of epistemic logic less expressive than that of $F O L$
$\star \exists$ different models that give same truth value to all formulas
\star cannot be distinguished by means of a formula
\star bisimulation...

Recap of basic logic notions

- logic $\Lambda=$ language $\mathcal{L}_{\Lambda}+$ particular subset of \mathcal{L}_{Λ} (called theorems or validities)
- particular subset of \mathcal{L}_{Λ} can be characterized in two ways:
- semantically: using models \Rightarrow validities
- syntactically: using axioms and inference rules \Rightarrow theorems

Recap of basic logic notions: axiomatics

- requires:
(1) axiom schemas = basic theorems of the logic
* in an axiom schema, we can perform uniform substitutions:
$\mathrm{K}_{i} \varphi \rightarrow \varphi$ instantiates to: $\mathrm{K}_{1}\left(m_{2} \vee m_{1}\right) \rightarrow\left(m_{2} \vee m_{1}\right)$
\star N.B.: the φ are meta-variables over the language
(2) inference rules = generate new theorems from existing theorems
\star notation: $\left\{\varphi_{1}, \ldots, \varphi_{m}\right\} / \varphi$, or: $\frac{\varphi_{1}, \ldots, \varphi_{m}}{\varphi}$
- a proof of φ in Λ is a sequence of formulas $\left\langle\varphi_{1}, \ldots, \varphi_{n}\right\rangle$ such that $\varphi_{n}=\varphi$, and for every $i \leq n$:
- φ_{i} is an (instance of) some axiom schema for Λ, or
- there are formulas $\varphi_{i_{1}}, \ldots, \varphi_{i_{m}}$, such that $i_{j}<i$, and $\frac{\varphi_{i_{1}}, \ldots, \varphi_{i_{m}}}{\varphi_{i}}$ is (an instance of) some inference rule for Λ
- φ is a theorem of Λ iff φ is provable in Λ
- notation: $\vdash_{\Lambda} \varphi$
- φ is consistent in Λ iff $\vdash_{\Lambda} \neg \varphi$
- deductions $\Gamma \vdash_{\Lambda} \varphi$ iff \ldots
(several options in modal logic)

Recap of basic logic notions: semantics

- requires:
(1) a class of models M for Λ
(2) truth conditions: when is φ true in M ?
\star notation in general: $M \Vdash \varphi$
\star in modal logic: $M, w \Vdash \varphi \quad$ ' φ is true in $\langle M, w\rangle$ '
- φ is valid in Λ iff $M, w \Vdash \varphi$, for every model M for Λ and world w in M
- notation: $\models_{\Lambda} \varphi$
- φ is satisfiable in Λ iff $\not \vDash_{\Lambda} \neg \varphi$
- logical consequence $\Gamma \neq_{\Lambda} \varphi$ iff ... (several options in modal logic)

Recap of basic logic notions: soundness and completeness

syntactic and semantic characterizations should coincide!

- soundness: for every formula φ, if $\vdash_{\Lambda} \varphi$ then $\models_{\Lambda} \varphi$
- proof by induction on the length of the proof of φ
- completeness: for every formula φ, if $\models_{\Lambda} \varphi$ then $\vdash_{\Lambda} \varphi$
- actually proved: 'if φ is consistent in Λ then φ is satisfiable in Λ '
- non-constructive proofs: canonical models [Henkin]
- constructive proofs: via tableau method

Plan

(1) Multiagent epistemic logic $S 5_{n}$

- Introduction
- Language
- Semantics
- Axiomatics
(2) Discussions
(3) Public announcement logic $P A L$

4 Dynamic epistemic logic $D E L$

Language

- primitive symbols:
- countable set of propositional atoms Atms
- finite set of agent symbols Agts
- BNF:

$$
\varphi::=p|\neg \varphi| \varphi \wedge \varphi \mid \mathrm{K}_{i} \varphi
$$

where p ranges over Atms and i over Agts

Language

- primitive symbols:
- countable set of propositional atoms Atms
- finite set of agent symbols Agts
- BNF:

$$
\varphi::=p|\neg \varphi| \varphi \wedge \varphi \mid \mathrm{K}_{i} \varphi
$$

where p ranges over Atms and i over Agts

- abbreviations:
- $\varphi \vee \psi \stackrel{\text { def }}{=} \neg(\neg \varphi \wedge \neg \psi)$
- $\varphi \rightarrow \psi \stackrel{\text { def }}{=} \ldots$
- $\varphi \leftrightarrow \psi \stackrel{\text { def }}{=} \ldots$

Language

- primitive symbols:
- countable set of propositional atoms Atms
- finite set of agent symbols Agts
- BNF:

$$
\varphi::=p|\neg \varphi| \varphi \wedge \varphi \mid \mathrm{K}_{i} \varphi
$$

where p ranges over Atms and i over Agts

- abbreviations:
- $\varphi \vee \psi \stackrel{\text { def }}{=} \neg(\neg \varphi \wedge \neg \psi)$
- $\varphi \rightarrow \psi \stackrel{\text { def }}{=} \ldots$
- $\varphi \leftrightarrow \psi \stackrel{\text { def }}{=} \ldots$
- $\hat{\mathrm{K}}_{i} \varphi \stackrel{\text { def }}{=} \neg \mathrm{K}_{i} \neg \varphi=" \varphi$ is possible for i "

Language (ctd.)

- 3 possible epistemic attitudes w.r.t. a formula φ :
$\mathrm{K}_{i \varphi} \quad \hat{\mathrm{~K}}_{i \varphi} \varphi \hat{\mathrm{~K}}_{i} \neg \varphi \quad \mathrm{~K}_{i} \neg \varphi$

Language (ctd.)

- 3 possible epistemic attitudes w.r.t. a formula φ :

- φ should be contingent: neither theorem nor inconsistent

Language (ctd.)

- 3 possible epistemic attitudes w.r.t. a formula φ :

$\mathrm{K}_{i} \varphi$	$\hat{\mathrm{~K}}_{i} \varphi \wedge \hat{\mathrm{~K}}_{i} \neg \varphi$	$\mathrm{~K}_{i} \neg \varphi$

- φ should be contingent: neither theorem nor inconsistent
- what if φ of the form $\mathrm{K}_{i} \psi$?

Language (ctd.)

- 3 possible epistemic attitudes w.r.t. a formula φ :

$\mathrm{K}_{i} \varphi$	$\hat{\mathrm{~K}}_{i} \varphi \wedge \hat{\mathrm{~K}}_{i} \neg \varphi$	$\mathrm{~K}_{i} \neg \varphi$

- φ should be contingent: neither theorem nor inconsistent
- what if φ of the form $\mathrm{K}_{i} \psi$?
- what if φ of the form $\hat{\mathrm{K}}_{i} \psi$?

Language (ctd.)

- 3 possible epistemic attitudes w.r.t. a formula φ :

$\mathrm{K}_{i} \varphi$	$\hat{\mathrm{~K}}_{i} \varphi \wedge \hat{\mathrm{~K}}_{i} \neg \varphi$	$\mathrm{~K}_{i} \neg \varphi$

- φ should be contingent: neither theorem nor inconsistent
- what if φ of the form $\mathrm{K}_{i} \psi$?
- what if φ of the form $\hat{\mathrm{K}}_{i} \psi$?
- 4 possible epistemic situations w.r.t. a formula φ :

$$
\begin{array}{rlr}
\varphi \wedge \mathrm{K}_{i} \varphi & \varphi \wedge \hat{\mathrm{~K}}_{i} \varphi \wedge \hat{\mathrm{~K}}_{i} \neg \varphi \\
& \neg \varphi \wedge \hat{\mathrm{~K}}_{i} \varphi \wedge \hat{\mathrm{~K}}_{i} \neg \varphi
\end{array} \quad \neg \varphi \wedge \mathrm{~K}_{i} \neg \varphi
$$

- ... for φ contingent and non-epistemic
- why are situations $\varphi \wedge \mathrm{K}_{i} \neg \varphi$ and $\neg \varphi \wedge \mathrm{K}_{i} \varphi$ missing?

Plan

(1) Multiagent epistemic logic $S 5_{n}$

- Introduction
- Language
- Semantics
- Axiomatics
(2) Discussions
(3) Public announcement logic $P A L$

4 Dynamic epistemic logic $D E L$

Semantics of $S 5_{n}$: Kripke models

- 'Saul Kripke' [Kri59]
- $S 5_{n}$-model = labeled graph $\langle W, \mathcal{K}, V\rangle$ where:
- W nonempty set 'possible worlds', 'states'
- $\mathcal{K}:$ Agts $\longrightarrow 2^{W \times W}$ such that every \mathcal{K}_{i} is an equivalence relation
\star equivalence relation = reflexive, transitive, and symmetric relation
\star write \mathcal{K}_{i} instead of $\mathcal{K}(i) \quad$ 'accessibility relation for i '
- $V:$ Atms $\longrightarrow 2^{W}$ 'valuation'
$\star V(p) \subseteq W$
- muddy children:

Semantics of $S 5_{n}$: models

- equivalence relation $=$ indistinguishability

$$
\mathcal{K}_{i}\left(m_{1} m_{2}\right)=\left\{w:\left\langle m_{1} m_{2}, w\right\rangle \in \mathcal{K}_{i}\right\}
$$

$=$ "set of worlds i cannot distinguish from $m_{1} m_{2}$ "
$=$ "set of worlds compatible with i 's knowledge"
$=$ "knowledge state of agent i at $m_{1} m_{2}$ "

- muddy children:

Semantics of $S 5_{n}$: truth conditions

- truth in a pointed model:
- $M, w \Vdash p$ iff $w \in V(p)$
- $M, w \Vdash \neg \varphi$ iff $M, w \Vdash \varphi$
- $M, w \Vdash \varphi \wedge \psi$ iff $M, w \Vdash \varphi$ and $M, w \Vdash \psi$
- $M, w \Vdash \mathrm{~K}_{i} \varphi$ iff $M, w^{\prime} \Vdash \varphi$ for every $w^{\prime} \in \mathcal{K}_{i}(w)$
\star hence: $M, w \Vdash \hat{\mathrm{~K}}_{i} \varphi$ iff $M, w^{\prime} \Vdash \varphi$ for some $w^{\prime} \in \mathcal{K}_{i}(w)$
- muddy children:

$M,\left(m_{1} m_{2}\right) \Vdash m_{1} \wedge m_{2} \wedge \mathrm{~K}_{1} m_{2} \wedge \hat{\mathrm{~K}}_{1} m_{1} \wedge \hat{\mathrm{~K}}_{1} \neg m_{1}$

Semantics of $S 5_{n}$: satisfiability and validity

- φ is $S 5_{n}$-satisfiable iff $M, w \Vdash \varphi$ for some $S 5_{n}$-model $M=\langle W, \mathcal{K}, V\rangle$ and some possible world $w \in W$
- φ is $S 5_{n}$-valid $\left(\models_{S 5_{n}} \varphi\right.$) iff $M, w \Vdash$ for every $S 5_{n}$-model $M=\langle W, \mathcal{K}, V\rangle$ and every possible world $w \in W$

Plan

(1) Multiagent epistemic logic $S 5_{n}$

- Introduction
- Language
- Semantics
- Axiomatics
(2) Discussions

3 Public announcement logic $P A L$

4 Dynamic epistemic logic $D E L$

Axiomatics of $S 5_{n}$

- axiom schemas for $S 5_{n}$:
- every theorem schema of classical propositional logic
(CPL)
- $\left(\mathrm{K}_{i} \varphi \wedge \mathrm{~K}_{i} \psi\right) \rightarrow \mathrm{K}_{i}(\varphi \wedge \psi)$ conjunction $\mathrm{C}\left(\mathrm{K}_{i}\right)$
- $\mathrm{K}_{i} \mathrm{~T}$ necessity $\mathrm{N}\left(\mathrm{K}_{i}\right)$
- $\mathrm{K}_{i} \varphi \rightarrow \varphi$
- $\mathrm{K}_{i} \varphi \rightarrow \mathrm{~K}_{i} \mathrm{~K}_{i} \varphi$ truth $\mathrm{T}\left(\mathrm{K}_{i}\right)$
- $\neg \mathrm{K}_{i} \varphi \rightarrow \mathrm{~K}_{i} \neg \mathrm{~K}_{i} \varphi$ pos. introspection $4\left(\mathrm{~K}_{i}\right)$ neg. introspection $5\left(\mathrm{~K}_{i}\right)$
- inference rules for $S 5_{n}$:
- $\frac{\varphi, \varphi \rightarrow \psi}{\psi}$ modus ponens (MP)
- $\frac{\varphi \rightarrow \psi}{\mathrm{K}_{i} \varphi \rightarrow \mathrm{~K}_{i} \psi}$
rule of monotony $\mathrm{RM}\left(\mathrm{K}_{i}\right)$
- N.B.: in axiom schemas and rules, φ, ψ and i are meta-variables
- $S 5_{n}$-proof, $S 5_{n}$-theorem: as usual
- we say:
- "CPL+C $\left(\mathrm{K}_{i}\right)+\mathrm{N}\left(\mathrm{K}_{i}\right)+\mathrm{RM}\left(\mathrm{K}_{i}\right)+\mathrm{T}\left(\mathrm{K}_{i}\right)+4\left(\mathrm{~K}_{i}\right)+5\left(\mathrm{~K}_{i}\right)$ axiomatizes $S 5_{n} "$

Axiomatics of $S 5_{n}$: examples of theorems

- $\vdash_{S 5_{n}} \mathrm{~K}_{i} \varphi \rightarrow \mathrm{~K}_{i} \varphi$
- proof:
(1) $\mathrm{K}_{i} \varphi \rightarrow \mathrm{~K}_{i} \varphi$
- $\vdash_{S 5_{n}} \mathrm{~K}_{i}(\varphi \wedge \psi) \rightarrow \mathrm{K}_{i} \varphi$
- proof:
(1) $(\varphi \wedge \psi) \rightarrow \varphi$
(2) $\mathrm{K}_{i}(\varphi \wedge \psi) \rightarrow \mathrm{K}_{i} \varphi$
(CPL)
from 1. by $\mathrm{RM}\left(\mathrm{K}_{i}\right)$
- $\vdash_{S 5_{n}} \mathrm{~K}_{i}(\varphi \wedge \psi) \rightarrow \mathrm{K}_{i} \psi$
- proof:...

Axiomatics of $S 5_{n}$: examples of theorems, ctd.

- $\vdash_{S 5_{n}} \mathrm{~K}_{i}(\varphi \wedge \psi) \rightarrow\left(\mathrm{K}_{i} \varphi \wedge \mathrm{~K}_{i} \psi\right)$
- proof:
(1) $\mathrm{K}_{i}(\varphi \wedge \psi) \rightarrow \mathrm{K}_{i} \varphi$ v.s.
(2) $\mathrm{K}_{i}(\varphi \wedge \psi) \rightarrow \mathrm{K}_{i} \psi$ v.s.
(3) $1 \rightarrow\left(2 \rightarrow\left(\mathrm{~K}_{i}(\varphi \wedge \psi) \rightarrow\left(\mathrm{K}_{i} \varphi \wedge \mathrm{~K}_{i} \psi\right)\right)\right)$ (CPL)
(4) $2 \rightarrow\left(\mathrm{~K}_{i}(\varphi \wedge \psi) \rightarrow\left(\mathrm{K}_{i} \varphi \wedge \mathrm{~K}_{i} \psi\right)\right)$
(5) $\mathrm{K}_{i}(\varphi \wedge \psi) \rightarrow\left(\mathrm{K}_{i} \varphi \wedge \mathrm{~K}_{i} \psi\right)$
from 1. and 3. by (MP) from 2. and 4. by (MP)
- $\vdash_{S 5_{n}} \mathrm{~K}_{i}(\varphi \wedge \psi) \leftrightarrow\left(\mathrm{K}_{i} \varphi \wedge \mathrm{~K}_{i} \psi\right)$
- proof: ...

Axiomatics of $S 5_{n}$: some useful theorems

- Rule of Necessitation $\mathrm{RN}\left(\mathrm{K}_{i}\right): \frac{\varphi}{\mathrm{K}_{i} \varphi}$
("for all φ, if $\vdash_{S 5_{n}} \varphi$ then $\vdash_{S 5_{n}} \mathrm{~K}_{i} \varphi$ ")
- proof:

by hyp.
(CPL)
from 1. and 2. by (MP) from 3. by $\operatorname{RM}\left(\mathrm{K}_{i}\right)$
$\mathrm{N}\left(\mathrm{K}_{i}\right)$
from 4. and 5. by (MP)
- N.B.: shorter proof using derived CPL inference rules:
(1) φ
(2) $\mathrm{T} \rightarrow \varphi$
$\mathrm{K}_{i} \top \rightarrow \mathrm{~K}_{i} \varphi$
(4) $\mathrm{K}_{i} \top$
(5) $\mathrm{K}_{i} \varphi$

by hyp.
from 1. by (CPL) from 2. by $\operatorname{RM}\left(\mathrm{K}_{i}\right)$
$\mathrm{N}\left(\mathrm{K}_{i}\right)$
from 3. and 4. by ($C P L$)

Axiomatics of $S 5_{n}$: some useful theorems

- Rule of Equivalence $\operatorname{RE}\left(\mathrm{K}_{i}\right): \frac{\varphi \leftrightarrow \psi}{\mathrm{K}_{i} \hookleftarrow \mathrm{~K}_{i} \psi}$ ("for all φ, if $\vdash_{S 5_{n}} \varphi \leftrightarrow \psi$ then $\vdash_{S 5_{n}} \mathrm{~K}_{i} \varphi \leftrightarrow \mathrm{~K}_{i} \psi$ ")
- proof:
(1) $\varphi \leftrightarrow \psi$
(2) $\varphi \rightarrow \psi$
(3) $\mathrm{K}_{i} \varphi \rightarrow \mathrm{~K}_{i} \psi$
(4) $\psi \rightarrow \varphi$
(5) $\mathrm{K}_{i} \psi \rightarrow \mathrm{~K}_{i} \varphi$
(6) $\mathrm{K}_{i} \varphi \leftrightarrow \mathrm{~K}_{i} \psi$

by hyp. from 1. by (CPL) from 2. by RM(K_{i}) from 1. by (CPL) from 4. by RM(K ${ }_{i}$) from 3. and 5. by (CPL)

Axiomatics of $S 5_{n}$: some useful theorems, ctd.

- Rule of Replacement of Proved Equivalents (REq):

$$
\frac{\psi \leftrightarrow \psi^{\prime}}{\varphi[p / \psi] \leftrightarrow \varphi\left[p / \psi^{\prime}\right]}
$$

(where $\varphi[p / \psi]$ obtained from φ by replacing every occurrence of p by ψ, etc.)

- proof by induction on the structure of φ :
(1) φ atomic: then $\psi=\varphi$, and $\varphi^{\prime}=\psi^{\prime}$
(2) $\varphi=\neg \varphi_{1}$: if $\psi=\varphi$ then $\varphi^{\prime}=\psi^{\prime}$; else $\psi \in \operatorname{sf}\left(\varphi_{1}\right) ; \ldots$
(3) $\varphi=\varphi_{1} \wedge \varphi_{2}: \ldots$
(4) $\varphi=\mathrm{K}_{i} \varphi_{1}: \ldots$

Axiomatics of $S 5_{n}$: some useful theorems, ctd.

- Kripke's axiom $\mathrm{K}\left(\mathrm{K}_{i}\right): \vdash_{S 5_{n}} \mathrm{~K}_{i}(\varphi \rightarrow \psi) \rightarrow\left(\mathrm{K}_{i} \varphi \rightarrow \mathrm{~K}_{i} \psi\right)$
- proof:

$$
\begin{aligned}
& \text { (1) }\left(\mathrm{K}_{i} \varphi \wedge \mathrm{~K}_{i}(\varphi \rightarrow \psi)\right) \rightarrow \mathrm{K}_{i}(\varphi \wedge(\varphi \rightarrow \psi)) \\
& \text { (2) }(\varphi \wedge(\varphi \rightarrow \psi)) \rightarrow \psi \\
& \text { (3) } \mathrm{K}_{i}(\varphi \wedge(\varphi \rightarrow \psi)) \rightarrow \mathrm{K}_{i} \psi \\
& \text { (4) }\left(\mathrm{K}_{i} \varphi \wedge \mathrm{~K}_{i}(\varphi \rightarrow \psi)\right) \rightarrow \mathrm{K}_{i} \psi \\
& \text { (5) } \mathrm{K}_{i}(\varphi \rightarrow \psi) \rightarrow\left(\mathrm{K}_{i} \varphi \rightarrow \mathrm{~K}_{i} \psi\right)
\end{aligned}
$$

$$
\begin{array}{r}
\mathrm{C}\left(\mathrm{~K}_{i}\right) \\
(C P L) \\
\text { from 2. by } \mathrm{RM}\left(\mathrm{~K}_{i}\right) \\
\text { from 1. and 3. by }(C P L) \\
\text { from 4. by }(C P L)
\end{array}
$$

- $\vdash_{S 5_{n}}\left(\mathrm{~K}_{i} \varphi \wedge \hat{\mathrm{~K}}_{i} \psi\right) \rightarrow \hat{\mathrm{K}}_{i}(\varphi \wedge \psi)$
- proof:...
hint: use (REq) and $\mathrm{K}\left(\mathrm{K}_{i}\right)$

Axiomatics of $S 5_{n}$: soundness and completeness

Soundness Theorem.

If $\vdash_{S 5_{n}} \varphi$ then $\models_{S 5_{n}} \varphi$.
Proof.
We prove: if there is a $S 5_{n}$-proof $\left\langle\varphi_{1}, \ldots, \varphi_{n}\right\rangle$ of φ then $\models{ }_{S 5_{n}} \varphi$.
We proceed by induction on n.
Base case: If $n=1$ then φ is an instance of an axiom schema. We prove that every such instance is valid.
Let M be any $S 5_{n}$-model, and w any world in M.

- Axiom $\mathrm{N}\left(\mathrm{K}_{i}\right)$ is $S 5_{n}$-valid: $M, w \Vdash \mathrm{~K}_{i} \top$ because $M, w^{\prime} \Vdash \top$ for every w^{\prime}.
- Every instance of axiom schema $\mathrm{C}\left(\mathrm{K}_{i}\right)$: $\left(\mathrm{K}_{i} \varphi \wedge \mathrm{~K}_{i} \psi\right) \rightarrow \mathrm{K}_{i}(\varphi \wedge \psi)$ is $S 5_{n}$-valid:
suppose $M, w \Vdash \mathrm{~K}_{i} \varphi \wedge \mathrm{~K}_{i} \psi$; then both φ and ψ are true in every world $w^{\prime} \in \mathcal{K}_{i}(w)$; therefore $\varphi \wedge \psi$ is true in every $w^{\prime} \in \mathcal{K}_{i}(w)$.

Axiomatics of $S 5_{n}$: soundness and completeness, ctd.

(Proof of Soundness Theorem, ctd.)
Induction hypothesis (I.H.): For all $m<n$, if $\left\langle\varphi_{1}, \ldots, \varphi_{m}\right\rangle$ is a $S 5_{n}$-proof of φ then $\models=_{S 5_{n}} \varphi$.
Induction step: Let $\left\langle\varphi_{1}, \ldots, \varphi_{n}\right\rangle$ be a $S 5_{n}$-proof of φ. We do a case analysis, checking the possible ways φ_{n} is obtained:

- φ_{n} is an instance of an axiom schema.

- φ_{n} is obtained from some $\varphi_{k}, k<n$, via $\mathrm{RM}\left(\mathrm{K}_{i}\right)$.

Then $\varphi_{k}=\psi \rightarrow \chi$ and $\varphi_{n}=\mathrm{K}_{i}(\psi \rightarrow \chi)$, and
$\left\langle\varphi_{1}, \ldots, \varphi_{k}\right\rangle$ is a $S 5_{n}$-proof of φ_{k}.
By I.H., $\models_{S 5_{n}} \psi \rightarrow \chi$, i.e. $M, w \Vdash \psi \rightarrow \chi$ for every $S 5_{n}$-model M and every world w in M. Therefore we must have
$\models_{S 5_{n}} \mathrm{~K}_{i}(\psi \rightarrow \chi)$.
"RM(K K_{i}) preserves validity"

- φ_{n} is obtained from some φ_{k} and $\varphi_{l}=\varphi_{k} \rightarrow \varphi_{n}$ via (MP).
"(MP) preserves validity"

Axiomatics of $S 5_{n}$: soundness and completeness, ctd.

Weak Completeness Theorem.

Proof.
follows from more general result: Sahlqvist's completeness theorem
Decidability and complexity Theorem.
The problem of $S 5_{n}$-satisfiability of a formula φ can be decided in polynomial space (PSPACE).

Proof.
using the tableau procedure

- $n>1$: requires indeed polynomial space in the worst case
- $S 5_{n}$ is PSPACE-complete for $n>1$
- $n=1$: decidable in nondeterministic polynomial time (NP)
- $S 5_{1}$ is NP-complete
(because CPL already NP-hard)

Axiomatics of $S 5_{n}$: an equivalent axiomatization

Theorem.

The logic $S 5_{n}$ is also axiomatized by $C P L+\mathrm{K}\left(\mathrm{K}_{i}\right)+\mathrm{RN}\left(\mathrm{K}_{i}\right)$.
Proof.
We have to show:

- φ can be proved from $C P L+\mathrm{C}\left(\mathrm{K}_{i}\right)+\mathrm{N}\left(\mathrm{K}_{i}\right)+\mathrm{RM}\left(\mathrm{K}_{i}\right)$ iff
φ can be proved from $C P L+\mathrm{K}\left(\mathrm{K}_{i}\right)+\mathrm{RN}\left(\mathrm{K}_{i}\right)$.
For that, it will suffice to prove:
- that $C P L+\mathrm{C}\left(\mathrm{K}_{i}\right)+\mathrm{N}\left(\mathrm{K}_{i}\right)+\mathrm{RM}\left(\mathrm{K}_{i}\right)$
- has theorem $\mathrm{K}\left(\mathrm{K}_{i}\right): \mathrm{K}_{i}(\varphi \rightarrow \psi) \rightarrow\left(\mathrm{K}_{i} \varphi \rightarrow \mathrm{~K}_{i} \psi\right)$
- has derived rules (MP) and $\mathrm{RN}\left(\mathrm{K}_{i}\right): \frac{\varphi}{\mathrm{K}_{i} \varphi}$
- that $C P L+\mathrm{K}\left(\mathrm{K}_{i}\right)+\mathrm{RN}\left(\mathrm{K}_{i}\right)$
- has theorems $\mathrm{C}\left(\mathrm{K}_{i}\right)$ and $\mathrm{N}\left(\mathrm{K}_{i}\right)$
- has derived rules (MP) and RM(K_{i})

Epistemic logic: discussions

Knowledge: omniscience

knowledge set of agent $i=$ set of formulas known by i

- i 's knowledge set is...
- closed under theorems:

$$
\star \frac{\varphi}{K_{i} \varphi} \quad \text { rule RN(K) }
$$

- closed under logical implication:
* $\frac{\varphi \rightarrow \psi}{K_{i} \varphi \rightarrow K_{i} \psi}$
rule $\mathrm{RM}(\mathrm{K})$
- closed under material implication:

$$
\begin{equation*}
\star\left(\mathrm{K}_{i} \varphi \wedge \mathrm{~K}_{i}(\varphi \rightarrow \psi)\right) \rightarrow \mathrm{K}_{i} \psi \tag{K}
\end{equation*}
$$

- omniscience problem
- if I know the axioms and inference rules of Peano Arithmetic then I know whether every even integer greater than 2 can be written as the sum of two prime numbers
* Goldbach's conjecture; still unproved!
- $S 5_{n}$ is an idealization: rational agent, perfect reasoner
- inadequate for human agents
- widely accepted in AI
- negative introspection criticized (see tomorrow)

The logic of knowledge: properties

- sound and complete: $\vdash_{S 5_{n}} \varphi$ iff $\models_{S 5_{n}} \varphi$
- decidable
- complexity of $S 5_{n}$-satisfiability is
- NP-complete if $n=1$
- PSPACE-complete if $n>1$
- there exists a simple normal form for the monoagent case $n=1$
- modal depth ≤ 1

Public announcement logic PAL

Epistemic logic: getting dynamic

- observe: after the children have heard father's announcement that $m_{1} \vee m_{2}$, they eliminate all those worlds where $m_{1} \vee m_{2}$ is false
- idea: public announcements transform the model ('update')
- example of muddy children puzzle: father says " $m_{1} \vee m_{2}$!"

(reflexive arrows omitted)

Public announcement logic $P A L$: language

- $\varphi!=$ announcement of truth of φ
- modal operators of public announcement logic (roughly): $\left\{\mathrm{K}_{i_{1}}, \ldots, \mathrm{~K}_{i_{\text {card (Agts) }}}\right\} \cup\{[\varphi!]: \varphi$ is a formula $\}$
- either circular definition of formulas
- or would not allow complex announcements
* $[([p!] q)!] \mathrm{K}_{i} q$

Public announcement logic $P A L$: language

- $\varphi!=$ announcement of truth of φ
- modal operators of public announcement logic (roughly): $\left\{\mathrm{K}_{i_{1}}, \ldots, \mathrm{~K}_{i_{\text {card }(A g t s)}}\right\} \cup\{[\varphi!]: \varphi$ is a formula $\}$
- either circular definition of formulas
- or would not allow complex announcements

$$
\star[([p!] q)!] \mathrm{K}_{i} q
$$

- BNF:

$$
\varphi::=p|\neg \varphi| \varphi \wedge \varphi\left|\mathrm{K}_{i} \varphi\right|[\varphi!] \varphi
$$

where p ranges over Atms and i over Agts

- reading:

$$
\begin{aligned}
{[\varphi!] \psi=} & " \psi \text { is true after every possible execution } \\
& \text { of the announcement of } \varphi \text { " } \\
\langle\varphi!\rangle \psi= & \neg[\varphi!] \neg \psi
\end{aligned}
$$

Public announcement logic $P A L$: models

- $P A L$-model $=S 5_{n}$-model
- truth conditions:

```
\(M, w \Vdash p\)
\(M, w \Vdash \neg \varphi\)
\(M, w \Vdash \varphi \wedge \psi \quad\) iff \(\quad \ldots\)
\(M, w \Vdash \mathrm{~K}_{i} \varphi \quad\) iff \(\quad M, w^{\prime} \Vdash \varphi\) for all \(w^{\prime} \in \mathcal{K}_{i}(w)\)
\(M, w \Vdash[\varphi!] \psi \quad\) iff \(\quad M, w \Vdash \varphi\) or \(M^{\varphi!}, w \Vdash \psi\)
```

- $M^{\varphi!}=$ "update of M by $\varphi^{\prime \prime}$

$m_{\underline{1} \vee}^{\Longrightarrow} m_{2}!$

(reflexive arrows omitted)

Public announcement logic $P A L$: models (ctd.)

(reflexive arrows omitted)

- $M^{\varphi!}=\left\langle W^{\varphi!}, \mathcal{K}^{\varphi!}, V^{\varphi!}\right\rangle$, where
$W^{\varphi!}=\left\{w^{\prime} \in W: M, w^{\prime} \Vdash \varphi\right\}$

Public announcement logic $P A L$: models (ctd.)

(reflexive arrows omitted)

- $M^{\varphi!}=\left\langle W^{\varphi!}, \mathcal{K}^{\varphi!}, V^{\varphi!}\right\rangle$, where

$$
\begin{aligned}
W^{\varphi!} & =\left\{w^{\prime} \in W: M, w^{\prime} \Vdash \varphi\right\} \\
\mathcal{K}_{i}^{\varphi!} & =\mathcal{K}_{i} \cap\left(W^{\varphi!} \times W^{\varphi!}\right) \\
V^{\varphi!}(p) & =V(p) \cap W^{\varphi!}
\end{aligned}
$$

Public announcement logic $P A L$: models (ctd.)

(reflexive arrows omitted)

- $M^{\varphi!}=\left\langle W^{\varphi!}, \mathcal{K}^{\varphi!}, V^{\varphi!}\right\rangle$, where
$W^{\varphi!}=\left\{w^{\prime} \in W: M, w^{\prime} \Vdash \varphi\right\}$
$\mathcal{K}_{i}^{\varphi!}=\mathcal{K}_{i} \cap\left(W^{\varphi!} \times W^{\varphi!}\right)$
$V^{\varphi!}(p)=V(p) \cap W^{\varphi!}$
- Remarks.
- announcements have to be truthful
\star else satisfaction relation \Vdash would be ill-defined
- if there is $w \in W$ such that $M, w \Vdash \varphi$ then $M^{\varphi!}$ is an $S 5_{n}$-model
- PAL-validity $\left(\|_{P A L} \varphi\right), P A L$-satisfiability: defined as usual

Public announcements: non-validities!

- public announcements do not always preserve knowledge: $\not \forall_{P A L} \mathrm{~K}_{i} \psi \rightarrow[\varphi!] \mathrm{K}_{i} \psi$
- consider $\psi=\neg \mathrm{K}_{i} p \ldots$
- public announcements are not always successful: $\not \forall_{P A L}[\varphi!] \mathrm{K}_{i} \varphi$
- consider $\varphi=p \wedge \neg \mathrm{~K}_{i} p$ ('Moore sentence'), and remember: $\mathrm{K}_{i}\left(p \wedge \neg \mathrm{~K}_{i} p\right)$ is $S 5_{n}$-unsatisfiable!

Reducing $P A L$ to $S 5_{n}$

- useful $P A L$ validities:

$$
\left.\begin{array}{ll}
{[\varphi!] \psi} & \leftrightarrow \\
{[\neg \varphi \vee] \neg \psi} & \leftrightarrow \\
{[\neg \varphi \vee \neg[\varphi!] \psi)} \\
{[\varphi!]\left(\psi_{1} \wedge \psi_{2}\right)} & \leftrightarrow \\
{[\varphi!] \mathrm{K}_{i} \psi} & \leftrightarrow
\end{array}(\neg \varphi!] \psi_{1} \wedge[\varphi!] \psi_{2}\right)
$$

Reducing $P A L$ to $S 5_{n}$

- useful $P A L$ validities:

$$
\begin{array}{lll}
{[\varphi!] \psi} & \leftrightarrow & (\neg \varphi \vee \psi) \\
{[\varphi!] \neg \psi} & \leftrightarrow & (\neg \varphi \vee \neg[\varphi!] \psi) \\
{[\varphi!]\left(\psi_{1} \wedge \psi_{2}\right)} & \leftrightarrow & \left([\varphi!] \psi_{1} \wedge[\varphi!] \psi_{2}\right) \\
{[\varphi!] \mathrm{K}_{i} \psi} & \leftrightarrow & \left(\neg \varphi \vee \mathrm{~K}_{i}[\varphi!] \psi\right)
\end{array}
$$

- idea: use equivalences as reduction axioms (rewriting from left to right)
- 'push down' announcement operators
- eliminate when a Boolean formula is attained
- $\operatorname{red}(\varphi)=$ result of reduction of φ

Reducing $P A L$ to $S 5_{n}$

- useful $P A L$ validities:

$$
\begin{array}{llll}
{[\varphi!] \psi} & \leftrightarrow & (\neg \varphi \vee \psi) & \text { if } \psi \text { is atomic } \\
{[\varphi!] \neg \psi} & \leftrightarrow & (\neg \varphi \vee \neg[\varphi!] \psi) & \\
{[\varphi!]\left(\psi_{1} \wedge \psi_{2}\right)} & \leftrightarrow & \left([\varphi!] \psi_{1} \wedge[\varphi!] \psi_{2}\right) \\
{[\varphi!] \mathrm{K}_{i} \psi} & \leftrightarrow & \left(\neg \varphi \vee \mathrm{~K}_{i}[\varphi!] \psi\right)
\end{array}
$$

- idea: use equivalences as reduction axioms (rewriting from left to right)
- 'push down' announcement operators
- eliminate when a Boolean formula is attained
- $\operatorname{red}(\varphi)=$ result of reduction of φ
- exercises:
- $\operatorname{red}\left([p!] \mathrm{K}_{1} p\right)=$?
- $\operatorname{red}\left([p!] \mathrm{K}_{1} \mathrm{~K}_{2} p\right)=$?
- $\operatorname{red}\left(\left[\left(p \wedge \neg \mathrm{~K}_{1} p\right)!\right] \mathrm{K}_{1} p\right)=$?
- reduction axioms also provide axiomatics (together with rule of substitution of equivalents)
- while the other axiom schemas of K are $P A L$-valid, too, reduction axioms suffice to prove all valid formula instances

Reducing $P A L$ to $S 5_{n}$, ctd.

Reduction Theorem.

for every $P A L$-formula φ :
(1) $\operatorname{red}(\varphi)$ is an $S 5_{n}$-formula
(2) $\vdash_{P A L} \varphi \leftrightarrow \operatorname{red}(\varphi)$

Sketch of proof.

- equivalences are theorems
- substitution of proved equivalents (REq) preserves $P A L$-theoremhood
- define a decreasing counter (sum of the number of announcements governing subformulas)
\Rightarrow rewriting terminates

PAL: properties

- satisfiability in $P A L$ is decidable
- apply red + decision procedure for $S 5_{n}$
- reduction to $S 5_{n}$ leads to suboptimal decision procedure
- N.B.: rule of uniform substitution not $P A L$-valid:
- $\vdash_{P A L}[p!] \mathrm{K}_{1} p$
- $\forall_{P A L}[\varphi!] \mathrm{K}_{i} \varphi$

Muddy children reloaded

- positive formula π :

$$
\pi::=\beta|\varphi \wedge \varphi| \varphi \vee \varphi \mid \mathrm{K}_{i} \varphi
$$

where β ranges over Boolean formulas

- prove that $\vdash_{P A L} \pi \rightarrow[\varphi!] \pi$ if π is a positive formula
- induction step for $\pi=\mathrm{K}_{i} \pi_{1}$:

> (1) $\pi_{1} \rightarrow[\varphi!] \pi_{1}$
> (2) $\mathrm{K}_{i} \pi_{1} \rightarrow \mathrm{~K}_{i}[\varphi!] \pi_{1}$
> (2) $\mathrm{K}_{i}[\varphi!] \pi_{1} \rightarrow[\varphi!] \mathrm{K}_{i} \pi_{1}$
> (4) $\mathrm{K}_{i} \pi_{1} \rightarrow[\varphi!] \mathrm{K}_{i} \pi_{1}$
by induction hyp.
by rule $\mathrm{RM}\left(\mathrm{K}_{i}\right)$ no forgetting from 2. and 3. by $C P L$

Muddy children reloaded

- positive formula π :

$$
\pi::=\beta|\varphi \wedge \varphi| \varphi \vee \varphi \mid \mathrm{K}_{i} \varphi
$$

where β ranges over Boolean formulas

- prove that $\vdash_{P A L} \pi \rightarrow[\varphi!] \pi$ if π is a positive formula
- induction step for $\pi=\mathrm{K}_{i} \pi_{1}$:

(1) $\pi_{1} \rightarrow[\varphi!] \pi_{1}$
(2) $\mathrm{K}_{i} \pi_{1} \rightarrow \mathrm{~K}_{i}[\varphi!] \pi_{1}$
(3) $\mathrm{K}_{i}[\varphi!] \pi_{1} \rightarrow[\varphi!] \mathrm{K}_{i} \pi_{1}$
(4) $\mathrm{K}_{i} \pi_{1} \rightarrow[\varphi!] \mathrm{K}_{i} \pi_{1}$

by induction hyp.
by rule $\mathrm{RM}\left(\mathrm{K}_{i}\right)$
no forgetting from 2. and 3. by $C P L$

- prove that $\vdash_{P A L}[\pi!] \pi$ if π is a positive formula
- $\vdash_{P A L} \pi \rightarrow[\pi!] \pi$ because \ldots
- $\vdash_{P A L} \neg \pi \rightarrow[\pi!] \pi$ because \ldots

Muddy children reloaded

- positive formula π :

$$
\pi::=\beta|\varphi \wedge \varphi| \varphi \vee \varphi \mid \mathrm{K}_{i} \varphi
$$

where β ranges over Boolean formulas

- prove that $\vdash_{P A L} \pi \rightarrow[\varphi!] \pi$ if π is a positive formula
- induction step for $\pi=\mathrm{K}_{i} \pi_{1}$:

$$
\begin{aligned}
& \text { (1) } \pi_{1} \rightarrow[\varphi!] \pi_{1} \\
& \text { (2) } \mathrm{K}_{i} \pi_{1} \rightarrow \mathrm{~K}_{i}[\varphi!] \pi_{1} \\
& \text { (3) } \mathrm{K}_{i}[\varphi!] \pi_{1} \rightarrow[\varphi!] \mathrm{K}_{i} \pi_{1} \\
& \text { (4) } \mathrm{K}_{i} \pi_{1} \rightarrow[\varphi!] \mathrm{K}_{i} \pi_{1}
\end{aligned}
$$

by induction hyp.
by rule $\mathrm{RM}\left(\mathrm{K}_{i}\right)$
no forgetting from 2. and 3. by $C P L$

- prove that $\vdash_{P A L}[\pi!] \pi$ if π is a positive formula
- $\vdash_{P A L} \pi \rightarrow[\pi!] \pi$ because..
- $\vdash_{P A L} \neg \pi \rightarrow[\pi!] \pi$ because \ldots
- show:
- $\vdash_{P A L}\left[\left(m_{1} \vee m_{2}\right)!\right] \mathrm{K}_{1} \mathrm{~K}_{2}\left(m_{1} \vee m_{2}\right)$
- $\vdash_{P A L}\left[\neg \mathrm{~K}_{2} m_{2}!\right] \mathrm{K}_{1} \neg \mathrm{~K}_{2} m_{2}$
- $\vdash_{S 5_{n}}\left(\mathrm{~K}_{1} \mathrm{~K}_{2}\left(m_{2} \vee m_{1}\right) \wedge \mathrm{K}_{1} \neg \mathrm{~K}_{2} m_{2} \rightarrow \mathrm{~K}_{1} \neg \mathrm{~K}_{2} \neg m_{1}\right.$
$-\vdash_{S 5_{n}}\left(\mathrm{~K}_{1} \neg \mathrm{~K}_{2} \neg m_{1} \wedge \mathrm{~K}_{1}\left(\mathrm{~K}_{2} \neg m_{1} \vee \mathrm{~K}_{2} m_{1}\right)\right) \rightarrow \mathrm{K}_{1} \mathrm{~K}_{2} m_{1}$
- conclude that
$\vdash_{P A L} \mathrm{~K}_{1}\left(\mathrm{~K}_{2} \neg m_{1} \vee \mathrm{~K}_{2} m_{1}\right) \rightarrow\left[\left(m_{1} \vee m_{2}\right)!\right\rceil\left\lceil\neg \mathrm{K}_{2} m_{2}!\right] \mathrm{K}_{1} m_{1}$
A. Herzig \& E. Lorini ()

Excursion: the Russian Cards problem [vD03]

Moscow Mathematics Olympiad in 2000:

From a pack of seven known cards Ann and Bill each draw three cars and Cath gets the remaining card.
How can Ann and Bill publicly and truthfully inform each other about their cards, without Cath learning from any of their cards who holds it?

Excursion: the Russian Cards problem [vD03]

Moscow Mathematics Olympiad in 2000:

From a pack of seven known cards Ann and Bill each draw three cars and Cath gets the remaining card.
How can Ann and Bill publicly and truthfully inform each other about their cards, without Cath learning from any of their cards who holds it?

- cards are 0,1,...,6; Ann holds 012 and Bill holds 345
- some bad solutions:
- Ann says: "Cath holds 6"
\star Ann can only announce what she knows!
- Ann says: "I don't hold 6"
\star Ann should know that Cath doesn't learn anything!
- Ann says: "I our Bill hold 012" (and Bill: "I our Ann hold 345")
\star Cath learns that Ann has 012!
- Ann says: "either I hold 012, or I hold none of 0, 1, 2"
« Cath doesn't learn any card,
* Ann knows that,
* but Cath does not know that!
\Rightarrow that Cath remains ignorant should be common knowledge

Excursion: the Russian Cards problem [vD03]

- solutions:
- Ann says: "My cards are among 012, 034, 056, 135 and 246 ", and then Bill says: "Cath has 6"
- can be modeled in $P A L$
- does not work for any number and any distribution of cards
- for which numbers there is a solution? (open problem)

Excursion: the Russian Cards problem [vD03]

- solutions:
- Ann says: "My cards are among 012, 034, 056, 135 and 246 ", and then Bill says: "Cath has 6"
- can be modeled in PAL
- does not work for any number and any distribution of cards
- for which numbers there is a solution? (open problem)
- perspective: unconditionally sure cryptographic protocols (perfect reasoners, public communication)
- RSA algorithm presupposes non-omniscience (decomposition into prime factors not feasible)

Excursion: the paradox of knowability [fitch]

- add a new modal operator quantifying over announcements:
- $M, w \Vdash \Delta \varphi$ iff there is ψ such that $M, w \Vdash\langle\psi\rangle \varphi$
\star N.B.: ψ should have no occurrence of \diamond
- allows to reason about plan existence (epistemic actions only)
- $\models^{\text {? }}$ Init $\rightarrow \diamond$ Goal
example: $\models \diamond\left(\mathrm{K}_{i} p \vee \mathrm{~K}_{i} \neg p\right)$
- verificationist thesis:
- $\varphi \rightarrow \Delta \mathrm{K}_{i} \varphi$ should be valid for every φ
- paradox of knowability:
- $\neq\left(p \wedge \neg \mathrm{~K}_{i} p\right) \rightarrow \Delta \mathrm{K}_{i}\left(p \wedge \neg \mathrm{~K}_{i} p\right)$

Dynamic epistemic logic $D E L$

Dynamic epistemic logic $D E L$

- $P A L$: announcements are perceived by every agent:
- $[p!]\left(\mathrm{K}_{1} p \wedge \mathrm{~K}_{2} p \wedge \mathrm{~K}_{3} p \wedge \ldots\right)$
- idea: $S 5_{n}$ models the agents' uncertainty about current state by means of possible states
\Rightarrow model uncertainty about current event by possible events
static uncertainty

possible worlds
indistinguishability of worlds

possible worlds indistinguishability of worlds
possible events
indistinguishability of events

- example: suppose $p \wedge \neg \mathrm{~K}_{1} p \wedge \neg \mathrm{~K}_{1} \neg p \wedge \neg \mathrm{~K}_{2} p \wedge \neg \mathrm{~K}_{2} \neg p$
- agent 2 learns that p
- various possible perceptions of 1 :
$\star 1$ also learns that p, and 2 knows that, etc. $\Rightarrow P A L$
$\star 1$ sees that 2 learns whether p, but does learn it himself (and 2 knows that, etc.)
* 1 does not sees this (and 2 knows that, etc.)
* 1 suspects this

$D E L$: event models

- static epistemic logic: static model $M^{s}=\left\langle W^{s}, \mathcal{K}^{s}, V^{s}\right\rangle$
- dynamic epistemic logic: dynamic model $M^{d}=\left\langle W^{d}, \mathcal{K}^{d}, V^{d}\right\rangle$, where
- W^{d} is a nonempty set of events
- $\mathcal{K}^{d}:$ Agts $\longrightarrow W^{d} \times W^{d}$
\star every \mathcal{K}_{i}^{d} is an equivalence relation
$\star e \mathcal{K}_{i} e^{\prime}=$ " i perceives occurrence of e as occurrence of $e^{\prime \prime}$
- $V^{d}: W^{d} \longrightarrow$ Fmls
* precondition of event w^{d}
- exercise: find dynamic models for the above examples

$D E L$: product construction

- given:
- a static model $M^{s}=\left\langle W^{s}, \mathcal{K}^{s}, V^{s}\right\rangle$
- a dynamic model $M^{d}=\left\langle W^{d}, \mathcal{K}^{d}, V^{d}\right\rangle$
what is the resulting static model?

$D E L$: product construction

- given:
- a static model $M^{s}=\left\langle W^{s}, \mathcal{K}^{s}, V^{s}\right\rangle$
- a dynamic model $M^{d}=\left\langle W^{d}, \mathcal{K}^{d}, V^{d}\right\rangle$
what is the resulting static model?
- $M=M^{s} \otimes M^{d}=\langle W, \mathcal{K}, V\rangle$ where
- $W=\left\{\left\langle w^{s}, w^{d}\right\rangle: w^{s} \in W^{s}, w^{d} \in W^{d}\right.$, and $\left.M, w^{s} \Vdash V^{d}\left(w^{d}\right)\right\}$
- $\mathcal{K}_{i}=\left\{\left\langle\left\langle w^{s}, w^{d}\right\rangle,\left\langle v^{s}, v^{d}\right\rangle\right\rangle: w^{s} \mathcal{K}_{i}^{s} v^{s}\right.$ and $\left.w^{d} \mathcal{K}_{i}^{d} v^{d}\right\}$
- $V\left(\left\langle w^{s}, w^{d}\right\rangle\right)=V^{s}\left(w^{s}\right)$
restricted product

$D E L$: product construction

- given:
- a static model $M^{s}=\left\langle W^{s}, \mathcal{K}^{s}, V^{s}\right\rangle$
- a dynamic model $M^{d}=\left\langle W^{d}, \mathcal{K}^{d}, V^{d}\right\rangle$
what is the resulting static model?
- $M=M^{s} \otimes M^{d}=\langle W, \mathcal{K}, V\rangle$ where
- $W=\left\{\left\langle w^{s}, w^{d}\right\rangle: w^{s} \in W^{s}, w^{d} \in W^{d}\right.$, and $\left.M, w^{s} \Vdash V^{d}\left(w^{d}\right)\right\}$
- $\mathcal{K}_{i}=\left\{\left\langle\left\langle w^{s}, w^{d}\right\rangle,\left\langle v^{s}, v^{d}\right\rangle\right\rangle: w^{s} \mathcal{K}_{i}^{s} v^{s}\right.$ and $\left.w^{d} \mathcal{K}_{i}^{d} v^{d}\right\}$
- $V\left(\left\langle w^{s}, w^{d}\right\rangle\right)=V^{s}\left(w^{s}\right)$
restricted product
- exercise: build outcome models for the above examples

$D E L$: properties

- reduction axioms
- completeness (via reduction axioms)
- applications
- Cluedo
- cryptographic protocols

What we saw in this lecture

- standard logic of knowledge: $S 5_{n}$
- criticisms: omniscience
- static
- dynamics of knowledge
- public announcement logic
- dynamic epistemic logic

Next lecture

- logic of belief
- dynamics of belief

Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi.
Reasoning about knowledge.
MIT Press, 1995.
Jaakko K. K. Hintikka.
Knowledge and belief.
Cornell University Press, Ithaca, N.Y., 1962.
(Saul Kripke.
A completeness theorem in modal logic.
Journal of Symbolic Logic, 24(1):1-14, 1959.
國 Hans P. van Ditmarsch.
The russian cards problem.
Studia Logica, 75:31-62, 2003.

