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Classical propositional logic CPL in a slide

Language:
set P of propositional variables P, Q, . . .
Boolean operators ¬, ∧, ∨, →, ↔, ↑,. . .
(complex) formulas A, B,. . .

Models:
valuations V ⊆ P

Semantics:
truth conditions:

V ° A → B iff V 6° A or V ° B
. . .

A is CPL-valid (|=CPL A) iff for every valuation V , V ° A

|=CPL P ∨ ¬P |=CPL ((P → Q) → P) → P
|=CPL ¬¬P → P |=CPL (P → Q) ↔ (¬P ∨Q)
|=CPL P → (Q → P) . . .

A is CPL-satisfiable iff for some valuation V , V |= A

P . . .
P → Q ∧ ¬(Q → P)
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First-Order Logic FOL in two slides

Language:

object variables x , y ,. . .
Predicates: R(t1, . . . , tn)

propositional variables = predicates of arity 0
a particular binary predicate: equals(t1, t2), written t1 = t2

Complex formulas: built with CPL operators and ∀x , ∃x
∃y∀xR(x , y) → ∀x∃yR(x , y)

Models:

domain D (must be non-empty)
interpretation of an n-ary predicate: I (R) ⊆ Dn

interpretation of a variable: I (x) ∈ D

I (equals) = {〈d , d〉 | d ∈ D}

3 / 146



First-Order Logic FOL in two slides (ctd.)

Semantics:
truth conditions:

(D, I ) ° R(t1, . . . , tn) iff 〈I (t1), . . . , I (tn)〉 ∈ I (R)
(D, I ) ° ∀xA iff (D, I ′) ° A for all x-variants I ′ of I
(D, I ) ° ∃xA iff (D, I ′) ° A for some x-variant I ′ of I

where an x-variant of I interprets everything as I except for x

A is FOL-valid (|=FOL A) iff for every 〈D, I 〉, 〈D, I 〉 ° A

|=FOL ∀xR(x) → ∃xR(x) |=FOL ∃y∀xR(x , y) → ∀x∃yR(x , y)
|=FOL ∃xR(x) ↔ ¬∀x¬R(x) . . .

A is FOL-satisfiable iff . . .

∃xR(x) ∧ ∃x¬R(x) ∃xR(x) ∧ ¬∀xR(x)
. . .

A is FOL-satisfiable iff ¬A is FOL-invalid
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The logic landscape

Classical Propositional Logic (CPL)

validity problem decidable
‘zero-order logic’

First-Order Logic (FOL)
validity problem semi-decidable:

if A is valid then the decision procedure will answer “yes”;
if A is invalid then the decision procedure will either answer
“no”, or loop.

Second-Order Logic (SOL), Higher-Order Logics (HOL)

undecidable

‘in between’: modal logics
infinitely many logics
‘many of them’ are decidable (“surprisingly often”)
. . . but many of them are not: there are quite simple modal
logics that are semi-decidable or even undecidable!
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Modal logics everywhere

philosophical logic

analysis of concepts: necessity and possibility; actions;
knowledge; belief; desires, goals and intentions; obligation and
permission; qualitative probability, . . .

artificial intelligence and multiagent systems

belief-desire-intention (BDI) agents, normative systems

theoretical computer science

proving properties of (possibly distributed) programs

semantic web

languages for relational structures (ontologies)

. . .

mathematical logic

logical systems between Classical Propositional Logic and
First-Order Logic

=⇒ formal reasoning in modal logics?
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The zoo of reasoning methods

“Is formula A valid?”

Classical Propositional Logic (CPL):

Hilbert-style axiomatics; natural deduction
Gentzen sequent systems; tableau method
resolution
heuristic search (many SAT provers)

First-Order Logic (FOL):

. . .
resolution provers: OTTER, SPASS,. . .

Higher-Order Logic (HOL):

Proof assistants (HOL, Isabelle, Coq,. . . )

7 / 146



Reasoning methods for modal logics

Hilbert-style axiomatics: [Lewis&Langford 32], natural
deduction [Prawitz 65]

require creativity =⇒ cannot be mechanized

Gentzen sequent systems: [Došen 85, Wansing 98, Braüner
00, Negri 05, Brünnler 06]

‘decorate’ proofs by labels =⇒ gets close to semantics
difficult to design for some logics (modal logic S5, etc.)

Resolution: [Enjalbert&Fariñas 89]
problem: no simple normal forms in modal logics

Translation to FOL and resolution: [Ohlbach 88,
Fariñas&Herzig 88, Auffray&Enjalbert 89]; MSPASS prover

problem: FOL is semi-decidable =⇒ you have to prove that
the translation codomain is a decidable fragment of FOL

Methods integrating SAT provers for CPL with tableaux:
[Giunchiglia&Sebastiani 98]; K-SAT theorem prover

Tableau methods [Fitting 83]
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Gentzen sequent systems: [Došen 85, Wansing 98, Braüner
00, Negri 05, Brünnler 06]
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Tableau methods for modal logics

“Is there a model for formula A?”

Equivalent to validity checking:

If there is a model for ¬A then A is invalid.
If there is no model for ¬A then A is valid.

Most general method: can be designed for ‘almost all’ modal
logics

Most successful method: tableau provers often match the
complexity bounds

Basic idea of the method: try to build a model by applying
the truth conditions

=⇒ close to semantics
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The idea of this course

Introduce the most important modal logics

. . . via the tableau method

. . . step-by-step

. . . using an implemented tableau prover: LoTREC
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Related courses at ESSLLI 2010

Lutz Strassburger: Introduction to Proof Theory
(introductory, 1st week)

Hans van Ditmarsch: Dynamic epistemic logic (introductory,
2nd week)

Jan Broersen and Leon van der Torre: Ten problems of
deontic logic and normative reasoning in computer science
(foundational, 1st week)

Johan van Benthem and Eric Pacuit: Logic, Rationality, and
Intelligent Interaction (workshop, 2nd week)
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About the course title
Tarski’s World: introduction to FOL

Alfred Tarski

examples = scenarios from geometry

resources:
book [Barwise&Etchemendy 91, 93, Barker-Plummer, B&E 04]
program (CD)

Kripke’s Worlds: introduction to modal logics

Saul Kripke

examples = modal logics

resources:
this course
book (to come)
program: LoTREC

http://www.irit.fr/Lotrec

online execution and download
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Early history: les tableaux de Monsieur
Toulouse-LauTREC
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Outline of course

Part 1: Modelling with graphs
Part 2: Talking about models
Part 3: The model construction method: basics
Part 4: Logics with simple constraints on models
Part 5: Logics with potential cycles
Part 6: Model checking in LoTREC
Part 7: Logics with transitive closure
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Part 1: Modelling with graphs

1 Kripke models as graphs

2 Classes of models
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Kripke Model [Kripke 59]

Given: a set P (propositional variables) and a set I (indexes)

M = (W , R,V )

W : nonempty set (possible worlds)
R: I −→ 2W×W (accessibility relation)
V : W −→ 2P (valuation function)

Pointed model (M, w), where w ∈ W is the actual world

{P}
R1

//

R2

½½4
44

44
44

44
44

44
44

4
∅OO

R1

²²

{Q}
;;

R1ww
ww

ww
ww

w

{P}
OO

R3

{P, R}
R1

SS
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Kripke models: terminologies

Possible worlds = graph nodes

objects, states

Valuation = node labeling

interpretation

Accessibility relation = edge labeling

transitions

Kripke model = labeled graph

relational model, transition system
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What is R?

Relation between objects:
wRu iff w is related to u
Alethic:
wRu iff u is possible given the actual world w
Temporal:
wRu iff u is in the future of w
Epistemic:
wRIu iff u is possible for agent I at actual world w
Deontic:
wRu iff u is an ideal counterpart of the actual world w
Dynamic:
wRIu iff u is a possible result of the occurrence of

the event I / execution of the program I in w
. . .

Readings of R =⇒ Properties of R
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Actions: the Yale Shooting Problem

A famous scenario [Hanks&McDermott 87]:

A turkey is initially alive (Al) and a gun is initially unloaded
(¬Ld).

The actions are ‘loading the gun’, ‘waiting for a moment’,
‘shooting the gun at the turkey’ (which is expected to kill the
turkey).

{Al}
Rload

//

Rwait
··

{Ld , Al}
Rshoot

²²

Rwait

®®

∅
Rload

//

Rwait

LL {Ld}
Rwait

SS

Observe: Rwait reflexive (= ‘skip’ program)
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Knowledge: muddy children (1)

A famous puzzle:

1. two children come back from the garden, both with mud on
their forehead; their father looks at them and says:

“at least one of you has mud on his forehead”
then he asks:
“those who know whether they are dirty, step forward!”

2. nobody steps forward

3. the father asks again:
“those who know whether they are dirty, step forward!”

4. both simultaneously answer: “I know!”

=⇒ model the situation before the father’s command
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Knowledge: muddy children (2)

Node labels = propositional variables:

Md1 = “child 1 is muddy”, etc.

Edge labels = accessibility relations:

uR2v = “child 2 cannot distinguish u and v”, etc.

The set of possible worlds and the accessibility relation in the
initial situation: . . .
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Knowledge: muddy children (3)

The set of possible worlds and the accessibility relation in the
initial situation (before the father announces Md1 ∨Md2):

{Md1} oo R2 //
OO

R1

²²

R1,R2

¶¶
{Md1, Md2}

OO

R1

²²

R1,R2


∅ oo
R2

//

R1,R2

LL {Md2}
R1,R2

SS

Observe: R1 and R2 are equivalence relations: reflexive, transitive
and symmetric
The situation after the father announced Md1 ∨Md2: . . .
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Knowledge: muddy children (4)

The set of possible worlds and the accessibility relation after the
father announced Md1 ∨Md2:

{Md1} oo R2 //

R1,R2

¶¶
{Md1 , Md2}

OO

R1

²²

R1,R2


{Md2}
R1,R2

SS

The situation after the first round (when none of the children
stepped forward). . .

N.B.: can be generalized to an arbitrary number n ≥ 2 of children
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Knowledge: and now for something different

Example (thanks T. de Lima)

There are n stairs and n agents 1,. . . , n.
On every step k stands agent k.
Each agent wears a hat that is either black or white.
Agent k can see the hats of the agents l > k.
Agent k cannot see the hats of the agents ≤ k.

Agents are only able to announce “black” or “white”.
Find a sequence of n announcements such that at least n − 1
agents correctly announce the colour of their own hat (they can
discuss beforehand).
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Belief: the earth is flat
A historical example [1630]: “The Pope believes the earth is flat.”

Node labels: Sphere = “Earth is a sphere”
Edge labels:

uRPopev = “at u, v is compatible with Pope’s beliefs”

{Sphere}
RPope

//

RPope

¼¼3
33

33
33

33
33

33
33

33
∅OO

RPope

²²

RPope

¯¯
gg

RPope

ww

...OO
RPope

²²
∅

RPope

RR

Observe: RPope is not reflexive; is transitive and Euclidean (for all
u, v1, v2, if uRv1 and uRv2 then v1Rv2) 25 / 146



Obligations

An actual example (since 2008 in France):
“It is forbidden to smoke in restaurants.”

Node labels: Smoke = “somebody is smoking”

Edge labels:
uRv = “v is a world where everything obligatory in u is true”,

“v is an ideal world w.r.t. u”,
“at u, v is a permitted state”

Smoke
R

// .

R

±±

Smoke

R

<<yyyyyyyyy

Observe: R is not reflexive; should not necessarily be transitive; is
serial (for all u there is v such that uRv)
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Knowledge and obligations: the
norm-violating muddy children

Exercise
Add to the muddy children scenario:
“none of the children should be muddy”

In your Kripke model, do the children know that it is obligatory to
be clean? If so, find a Kripke model where they do not know that
obligation.

In your new Kripke model, does child 1 know that child 2 does not
know the obligation? If so, . . .
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Building a graph in LoTREC

1 http://www.irit.fr/Lotrec (Capital “L”)

or, Download =⇒ Executable to get LoTREC 2.0.zip

unzip, then run file run.bat

2 Open a new logic (menu ‘Logic’)

3 Add a new rule (‘Rules’ tab):

no conditions
in the action part:
createNewNode w
createNewNode u
link w u R
add w P

(capital first letter =⇒ constant, small first letter =⇒ variable)

4 Edit the default strategy (‘Strategies’ tab):

call the new rule (double click)

5 Click on “Build Premodels”
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Part 1: Modelling with graphs

1 Kripke models as graphs

2 Classes of models
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Classes of models

A class of models can be defined by

constraints on the accessibility relation
constraints on the valuation

Constraints depend on the concepts we want to model

time
events, programs
actions
knowledge
belief
obligations
. . .

Mathematical properties?

satisfiability in class decidable?
complexity?
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Constraints on a single relation R

Transitive

Reflexive

Serial: for all u exists v s.th. uRv

Deterministic: for all u, v1, v2, if uRv1 and uRv2 then v1=v2

Euclidean: for all u, v1, v2, if uRv1 and uRv2 then v1Rv2

Linear: for all u, v1, v2, if uRv1 and uRv2 then v1Rv2 or v2Rv1

Symmetric

Equivalence relation: reflexive, transitive, symmetric

Confluent (Church-Rosser)

no infinite R-chain (conversely well-founded)

Universal: R = W ×W

Singleton models: {M : card(W ) = 1}
. . .
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Constraints involving several relations

Inclusion: RI ⊆ RJ

Union: RI = RJ ∪ RK

Converse: RJ = (RI )
−1

Reflexive and transitive closure: RJ = (RI )
∗

Permutation: RI ◦ RJ ⊆ RJ ◦ RI

Confluence: . . .

. . .
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Constraints on the valuation V

names for worlds:
if N ∈ V (w) and N ∈ V (u) then w =u

‘nominals’ (hybrid logic)
‘objects’ (description logics)

R is persistent (alias hereditary):
if P ∈ V (w) and wRu then P ∈ V (u)

intuitionistic implication
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Time: constraints

‘the (non-strict) future includes the present’
=⇒ R reflexive
‘strict future excludes the present’
=⇒ R irreflexive
‘future of future is future’
=⇒ R transitive
‘there is always a future state’
=⇒ R serial
‘time is linear’
=⇒ R linear
‘time will come to an end’
=⇒ no infinite R-chain (conversely well-founded)
RI = ‘future’, RJ = ‘past’ (or: RI = ‘tomorrow’, RJ =
‘yesterday’)

RJ = (RI )
−1

RI = ‘future’, RJ = ‘next’
RI = (RJ)

∗
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Knowledge: constraints

R = ‘indistinguishability’
=⇒ Equivalence relation:

reflexive (‘knowledge is true’),
transitive (‘I know what I know’),
Euclidean (‘I know what I don’t know’)
same as: reflexive, transitive, and symmetric

Confluence instead of Euclideanity [Lenzen]
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Belief: constraints

actual world not necessarily in the worlds compatible with the
agent’s belief
=⇒ R not necessarily reflexive

transitive, Euclidean, serial
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Programs and events: constraints

I3 = ‘nondeterministic composition of programs I1 and I2’
=⇒ RI3 = RI1 ∪ RI2

I2 = ‘execution of program I1 the other way round’
=⇒ RI2 = (RI1)

−1

I2 = ‘iteration of program I1’
=⇒ RI2 = (RI1)

∗
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Knowledge and events: constraints

RI = effect of event I
RJ = indistinguishable for agent J

‘no forgetting’ (alias ‘perfect recall’)
=⇒ RI ◦ RJ ⊆ RJ ◦ RI

. RI //___OO

RJ Â
Â
Â .OO

RJ

.
RI

// .

‘no learning’ (alias ‘no miracles’)
=⇒ RJ ◦ RI ⊆ RI ◦ RJ
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Closing under constraints in LoTREC

Add a rule (‘Rules’ tab) which closes under reflexivity:
condition: isNewNode w
action: link w w R

(capital first letter =⇒ constant, small first letter =⇒ variable)

Exercise: close R under transitivity

Exercise: make R persistent
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Outline of course

Part 1: Modelling with graphs
Part 2: Talking about models
Part 3: The model construction method: basics
Part 4: Logics with simple constraints on models
Part 5: Logics with potential cycles
Part 6: Model checking in LoTREC
Part 7: Logics with transitive closure

40 / 146



Part 2: Talking about models

3 The modal language

4 Truth conditions

5 Reasoning in modal logics

6 The standard translation
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Talking about graphs in the first-order
language

In the language of First-Order Logic FOL:

nodes = variables
unary predicates for the node labels
binary predicates for the edge labels
quantify over nodes

Examples

∃w(Md1 (w) ∧Md2(w))

∃w(¬Md1 (w) ∧ ¬Md2(w))

∀w(∃u(R1(w , u) ∧Md1 (u)) ∧ ∃u(R1(w , u) ∧ ¬Md1 (u)))

∀w(Md1 (w) → ¬Md2(w)) (after father’s announcement)

∀w(Rload(w , u) → Ld(u)) ∀w((Ld(w) ∧ Rshoot(w , u)) → ¬Al(u))
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Talking about graphs in a modal language

Don’t mention nodes, only talk about their properties

View the graph locally (sitting at a node)

“P” means “P labels the actual node”
2IP means “P labels every node accessible from the actual
node via an edge labeled I”

2loadLd (Yale Shooting Problem)
21Md2 (Muddy Children Puzzle)

3IP means “P labels some node accessible from the actual
node via an edge labeled I”

3loadLd
31Md1

use Boolean operators

¬31Md2 (in the actual world)

31Md1 ∧31¬Md1

21(Md1 ∨Md2) (after the father has announced Md1 ∨Md2)

2IP → 3IP
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Reading the modal operators: necessity and
possibility

Monomodal (just one operator)
3A = MA = “A is possible”
2A = LA = “A is necessary”

Multimodal version:
3IA = 〈I 〉A = “A is possible w.r.t. I”
2IA = [I ]A = . . .
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Necessity and possibility: two different usages

1 Logical/metaphysical/. . . necessity and possibility
=⇒ modal logic in the narrow sense

2 Any expression that is used to qualify the truth of a judgement
Example: “it is raining”:

“it will always rain” (temporal)
“it will sometimes rain” (temporal)
“it will rain tomorrow” (temporal)
“it is known that it is raining” (epistemic)
“it is believed that it is raining” (doxastic)
“it will rain after sunset” (dynamic)
“it should be the case that it is raining” (deontic)
“it is permitted that it is raining” (deontic)
. . .

Common feature: not truth-functional
no function f s.th. truthvalue(3A) = f (truthvalue(A))

=⇒ modal logics in the large sense
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Temporal operators

FA = “A will be true at some time point in the future”
= “A will eventually be true”

GA = “A will be true at every time point in the future”
= “A will be true henceforth”

PA = “A was true at some time point in the past”
HA = “A was true at every time point in the past”
AUB = “A until B”
ABB = “A before B”
ASB = “A since B”
XA = “A will be true at the next time point”

N.B.: GA should imply FA, and HA should imply PA
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Dynamic operators

AfterIA = “A will be true after every possible execution
of program I”

= [I ]A
FeasibleIA = “A will be true after some execution

of program I”
= 〈I 〉A

N.B.: programs may be nondeterministic; FeasibleIA does not
imply AfterIA
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Epistemic and doxastic operators

episteme = επιστηµη = ‘know’ (Greek)

doxa = δoξα = ‘believe’ (Greek)

BelIA = “agent I believes that A”
= “A is true in all possible worlds compatible

with what I believes”
KIA = “agent I knows that A”

= “A is true in all possible worlds compatible
with what I knows”

B̂elIA = “A is compatible with I ’s beliefs”

K̂IA = “A is compatible with I ’s knowledge”

N.B.: KIA should imply BelIA
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Deontic operators

δεoν = “binding” (Greek)

OA = “A is obligatory”
PA = “A is permitted”
. . . = “A is forbidden” = ¬PA
. . . = “A is omissible” = ¬OA

Can be relative to a normative system:
OFrance¬Smoke, but ¬OPortugal¬Smoke

Can be relative to an agent (personal obligation)

N.B.: OA should imply PA
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Mixing several kinds of operators

Epistemic and event operators [Plaza, Baltag&Moss,
Gerbrandy, van Ditmarsch, van der Hoek&Kooi,. . . ]:
¬K1Md1 ∧AfterMd1 !K1Md1

(event = announcement of Md1 )
¬K1Md1 ∧After¬K2Md2 !K1Md1

Epistemic and temporal operators [Fagin, Halpern, Moses,
Vardi]:
. . .

Doxastic and temporal operators:
. . .

Epistemic and deontic operators:
OFrance¬Smoke ∧ ¬KIOFrance¬Smoke

. . .
=⇒ Multi-dimensional modal logics
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Implications, implications . . .

Strict implication [Lewis&Langford]
A ≺ B = “A strictly implies B”

like →, but A ≺ (B ≺ A) invalid
= 2(A → B)

Intuitionistic implication [Brouwer, Gödel, Kripke]
A ⇒ B = “A intuitionistically implies B”

like →, but excluded middle A ∨ (A ⇒ ⊥), . . . invalid

Conditional [Lewis]
A2⇒B = “if A then B”

like ⇒, but strengthening in the antecedent
(A2⇒B) → ((A ∧ C )2⇒B) invalid

Conditional obligation [Chellas,. . . ]
O(A|B) = “it ought to be that if A, then B”

O(A|B) different from O(A → B)
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Duality

Intuitively:
K̂IA ↔ ¬KI¬A
PIA ↔ ¬OI¬A
FA ↔ ¬G¬A
AfterIA ↔ ¬FeasibleI¬A
. . .

Abstracting:
3IA ↔ ¬2I¬A
2IA ↔ ¬3I¬A

Options for the choice of the primitives:

take both 3I and 2I as primitive

take 3I as primitive, and set 2IA
def
= ¬3I¬A

take 2I as primitive, and set 3IA
def
= ¬2I¬A
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How define a language?

Set of node labels P = {P, Q, . . .} (‘propositional variables’)

Set of edge labels I = {I , J, . . .} (‘indexes’)

Language = set of well-formed formulas

Language is defined by BNF:

A ::= P | ¬A | A ∧ A | A ∨ A | 〈I 〉A | [I ]A

where P ranges over P and I ranges over I
(unary modal operators only)

Convention: when I = {I} then

write 2A instead of [I ]A
write 3A instead of 〈I 〉A
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How define a language in LoTREC?

Prenex form: a LoTREC formula is
a propositional variable P, or
an expression of the form op(Arg1, . . . , Argn) where

op is the name of a logical operator
the Argi are either formulas or in the index set I

¬A = not(A)
A ∧ B = and(A,B)
A ∨ B = or(A, B)

. . .

BelIA = Bel(I , A)
KIA = Knows(I , A)

K̂IA = Poss(I , A)
. . .

AUB = Until(A, B)
. . .

A ⇒ B = ifThen(A,B)
. . .

N.B.: may write op Arg1 . . . Argn (parentheses not needed)
Adding a new connector:
‘Connectors’ tab =⇒ name, arity, display mode
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Part 2: Talking about models

3 The modal language

4 Truth conditions

5 Reasoning in modal logics

6 The standard translation
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Truth conditions

Evaluate a formula A in a pointed model (M, w),
where M = (W , R,V ) and w ∈ W (‘the actual world’)

Atoms

M, w ° P iff P ∈ V (w)

Boolean operators

M, w ° ¬A iff M, w 6° A
M, w ° A ∧ B iff M, w ° A and M, w ° B
M, w ° A ∨ B iff . . .
. . .

Modal operators

M, w ° 3A iff there exists u s.th. wRu and M, u ° A
M, w ° 2A iff for all u, if wRu then M, u ° A
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Truth conditions

Example

For the pointed model (M, w)

{P} R //

R !!CC
CC

CC
CC

∅
R

// ∅

{P}
R

// ∅

(actual world underlined) we have:
M, w ° P
M, w ° 3¬P
M, w ° 23¬P
But: M, w 6° 2P.
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Truth conditions

Multi-modal operators

M, w ° 〈I 〉A iff there exists u s.th. wRIu and M, u ° A
M, w ° [I ]A iff . . .

Relation algebra operators

M, w ° 〈I−1〉A iff there is u s.th. wR−1
I u and M, u ° A

M, w ° 〈I ∪ J〉A iff there is u s.th. w(RI ∪ RJ)u and M, u ° A
M, w ° 〈I ∗〉A iff there is u s.th. w(RI )

∗u and M, u ° A
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Truth conditions

Temporal operators (linear time)

M, w ° XA iff there exists u s.th. wRu and M, u ° A
M, w ° FA iff there exists n,u s.th. wRnu and M, u ° A
M, w ° AUB iff there exists u s.th. wR∗u and

M, u ° B
M, v ° A for all v s.th. (wR∗v and vR+u)

A
w

- A - - B
uA

-. . .

. . .

Implications

M, w ° A ⇒ B iff for all u, if wRu then M, u 6° A or M, u ° B
(both for strict and intuitionistic implication;

difference: preservation condition)

M, w ° A2⇒B iff for all u,
if u ∈ minR({v | wRv and M, v ° A}) then M, u ° B

(conditional)
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Talking about actions

The Yale Shooting Problem:

{Al}
Rload

//

Rwait
··

{Ld , Al}
Rshoot

²²

Rwait

®®

∅
Rload

//

Rwait

LL {Ld}
Rwait

SS

M, w ° AfterloadAfterwaitAftershoot¬Al
M, w ° Aftershoot⊥
M, w ° Afterload¬Aftershoot⊥

60 / 146



Talking about knowledge (1)

Muddy children puzzle, initial situation:

{Md1} oo R2 //
OO

R1

²²

R1,R2

¶¶
{Md1, Md2}

OO

R1

²²

R1,R2


∅ oo
R2

//

R1,R2

LL {Md2}
R1,R2

SS

M, w ° K1Md2

M, w ° K̂1Md1 ∧ K̂1¬Md1

M, w ° K̂1K̂2(¬Md1 ∧ ¬Md2 )
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Talking about knowledge (2)

Muddy children puzzle, after father has announced Md1 ∨Md2:

{Md1} oo R2 //

R1,R2

¶¶
{Md1 , Md2}

OO

R1

²²

R1,R2


{Md2}
R1,R2

SS

M, w 6° K̂1K̂2(¬Md1 ∧ ¬Md2 )
M, w ° K1K2(Md1 ∨Md2 )
M, w 6° K1Md1
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Talking about knowledge (3)

Muddy children puzzle, after the first round (when none of the
children stepped forward):

. . .

M, w ° K1(Md1 ∧Md2 ) ∧K2(Md1 ∧Md2 )
M, w ° K1K2(Md1 ∧Md2 ) ∧K2K1(Md1 ∧Md2 )∧
M, w ° K1K2K1(Md1 ∧Md2 ) ∧K2K1K2(Md1 ∧Md2 )
M, w ° K1K2K1K2(Md1 ∧Md2 ) ∧ . . .
. . .
M, w ° CK{1,2}(Md1 ∧Md2 ) (common knowledge)

Truth condition:

M,w ° CK{1,2}A iff for all u, if w(R1 ∪ R2)
∗u then M, u ° A
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Talking about belief

“The Pope believes the earth is flat.”

{Sphere}
RPope

//

RPope

¼¼3
33

33
33

33
33

33
33

33
∅OO

RPope

²²

RPope

¯¯
gg

RPope

ww

...OO
RPope

²²
∅

RPope

RR

M, w ° Sphere ∧ BelPope¬Sphere
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Talking about obligations

“It is forbidden to smoke in restaurants.”

{Smoke}
R

// ∅
R

¯¯

{Smoke}
R

<<xxxxxxxxxx

M, w ° Smoke ∧O¬Smoke ∧ ¬PSmoke
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Talking about objects and their relations

The genealogy ontology:

Propositional variables: Man, Woman,. . . (‘concepts’)

Modal operators:
FatherOf , MotherOf , BrotherOf , GrandfatherOf ,. . . (‘roles’)

Man

RFatherOf

²²

Woman ooRSisterOf//

RMotherOf &&LLLLLLLLLL Woman

Man
zz RMotherOf

ttttttttt
ManOO

RFatherOf

²²
Man

M, w ° Woman ∧ ∃SisterOf .Woman ∧ ∀MotherOf .Man
M, w ° ∃MotherOf .∃FatherOf .Man
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Part 2: Talking about models

3 The modal language

4 Truth conditions

5 Reasoning in modal logics

6 The standard translation
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Model checking

Given A, pointed model (M,w): do we have M, w ° A?
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Validity in a Kripke model

A is valid in model M iff for all w in M: M, w ° A

Given formula A, model M: is A valid in M?

Example

Formula 2P is valid in the model

∅ R // {P}

The formulas ¬P and 2P → P are not valid in M.
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Validity in a class of Kripke models

K = the class of all Kripke models

A is valid in the class of models C ⊆ K iff

for all models M in C: A is valid in M

notation: |=C A

Given formula A, class of models C: is A valid in C?

Examples

3P ↔ ¬2¬P is valid in K
2(P ∨ ¬P) is valid in K
2P ∧2Q → 2(P ∧ Q) is K-valid
2P → P is K-invalid (being invalid in our example model)

70 / 146



Examples of validity in a class of models

Reflexive models (KT)
2P → P valid
2A → A valid, for any formula A (A = schematic variable)

Transitive models (K4)
33A → 3A valid, for any formula A (alias 2A → 22A)

Reflexive and transitive models: S4
valid: . . .

Symmetric relation (KB)
valid: A → 23A (alias 32A → A)

Euclidean relation (K5) (alias. . . valid: 3A → 23A

Equivalence relation (S5)
valid: . . .
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Examples of validity in a class of models (ctd.)

Serial models: for every w there is w ′ such that wRw ′

valid: . . .

Deterministic models:
valid: . . .

Confluence:
valid: 32A → 23A

Linearity:
valid: 3A ∧3B → (3(A ∧3B)) ∨ (3(3A ∧ B))

Singleton models: {M : card(W ) = 1}
valid: . . .

Inclusion of R1 in R2

valid: 22A → 21A (alias 31A → 32A)

Permutation: R1 ◦ R2 ⊆ R2 ◦ R1

valid: 3132A → 3231A (alias 2221A → 2122A)

. . .
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Logical consequence in a class of models

B is a global logical consequence of A in class C iff
for all M in C: if A is valid in M then if B is valid in M

notation: A |=C B

Given formulas A, B, class of models C: do we have A |=C B?

B is a local logical consequence of A in class C
iff for all M in C and w in M: if M,w ° A then M,w ° B

Difference: 2A is a global logical consequence of A, but not a
local consequence.

Proposition

B is a local logical consequence of A in C iff |=C A → B
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Satisfiability in a class of models

A is satisfiable in C iff for some M in C and some w in M:
M,w ° A

Given formula A, class of models C: is A satisfiable in C?

Examples

P is K-satisfiable
P ∧ ¬2P is K-satisfiable
P ∧2¬P is K-satisfiable
P ∧2¬P is unsatisfiable in the class of reflexive models KT

Proposition

A is C-valid iff ¬A is C-unsatisfiable.
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The main reasoning problems

1 Model checking
Given A, finite M, w in M: do we have M, w ° A?

2 Satisfiability
Given A, C: is there M ∈ C and w in M s.th. M, w ° A?

3 Model building
Given A, C:

if A is unsatisfiable in C then output “NO”
if A is satisfiable in C then
output some model M that is in C and some w in M such that
M, w ° A

How can we solve them automatically?
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The standard translation

Maps the language of modal logic to the language of FOL:
ST (P, w) = P(w)

ST (¬A, w) = ¬ST (A, w)
ST (A ∧ B, w) = ST (A, w) ∧ ST (B,w)

ST (2IA, w) = ∀u(RI (w , u) → ST (A, u) where u is new

ST (3IA, w) = ∃u(RI (w , u) ∧ ST (A, u)) where u is new

Example

ST (3I3JP) = . . .

Theorem
Suppose the class C can be defined by a FOL formula AC .
Then A is C-satisfiable iff AC ∧ ST (A) is FOL-satisfiable.
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The standard translation: examples

Examples

The class of reflexive models KT is defined by the first-order
formula AKT = ∀wR(w ,w).

The class of transitive models K4 is defined by

AK4 = ∀w1∀w2∀w3 ((R(w1, w2) ∧ R(w2, w3)) → R(w1, w3))

The class of serial models is defined by . . .

The class of confluent models is defined by . . .

Examples

The class of finite models cannot be defined by a FOL
formula.

The class of models without infinite R-chains (‘conversely
well-founded’) cannot be defined by a FOL formula.
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The standard translation and the two-variable
fragment of FOL

FO2 = FOL with constants, equality and only two variables
satisfiability is decidable

in nondeterministic exponential time (NEXPTIME)

Standard translation with only two variables w1 and w1:
ST (2IA,w1) = ∀w2(RI (w1, w2) → ST (A, w2)
ST (2IA,w2) = ∀w1(RI (w2, w1) → ST (A, w1)

Problem: to define transitivity in FOL we need three variables

. . . and FO3 is not decidable
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Outline of course
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Do the algorithms do the right thing?

9 The basic modal Logic and its implementation in LoTREC
Classical logic
Modal logic K
Multi-modal logic Kn
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Classical logic [Beth 55, Hintikka 55,
Schütte 56; Smullyan 68]

Checking the satisfiability of a given formula A:
1 Try to find M and w by applying the truth conditions

M, w ° A1 ∧ A2 =⇒ add M,w ° A1, and add M, w ° A2

M, w ° A1 ∨ A2 =⇒ either add M,w ° A1, or add
M, w ° A2

(nondeterministic)
M, w ° ¬A1 =⇒ don’t add M, w ° A1 !!

M, w ° ¬¬A1 =⇒ add M, w ° A1

M, w ° ¬(A1 ∨ A2) =⇒ add M, w ° ¬A1 and add
M, w ° ¬A2

M, w ° ¬(A1 ∧ A2) =⇒ add M, w ° ¬A1 or add
M, w ° ¬A2

=⇒ tableau rules
2 apply while possible (saturation)
3 is M a model?

NO if both M,w ° B and M, w ° ¬B (closed tableau)
ELSE M is a model for A (open tableau)
W = {w}, R = ∅, V (w) = {P : M, w ° P} 82 / 146
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Modal logic [Fitting 83]

Basic cases

M,w ° 3A
=⇒ add some new node u, add wRu, add M, u ° A

M,w ° 2A
=⇒ for all node u s.th. wRu, add M, u ° A

Apply truth conditions = build a labeled graph

create nodes

add links

add formulas to nodes
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Example

a node with the input formula
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Example

M, w ° A ∧ B iff M, w ° A and M, w ° B

A is 2P
B is 3Q ∧3(R ∨ ¬P)
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Example

M, w ° A ∧ B iff M, w ° A and M, w ° B
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Example

M, w ° 3A iff there is u s.th. wRu and M, u ° A
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Example

M, w ° 2A iff for all u: if wRu then M, u ° A
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Example

M, w ° A ∨ B iff M,w ° A or M,w ° B

premodel 1 premodel 2
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Example

premodel 1 premodel 2
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Example

premodel 1

Model
=⇒

extraction

M, w ° P then P ∈ V (w)
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A short history of the tableau method

Since 1950’s: handwritten proofs

. . . Sequent calculi [Gentzen]

Tableaux calculi
(tableau proof = sequent proof backwards)

Kripke: explicit accessibility relation

Smullyan, Fitting: uniform notation

Single-step tableaux [Massacci]
σ : 3A =⇒ σ, n : A

Tableaux by graph rewriting [Castilho et al. 97, Gasquet et al.
06]

Nowadays: automated provers

fast: FaCT [Horrocks], LWB [Heuerding, Jäger et col.],
K-SAT [Giunchiglia&Sebastiani],. . .

generic: TWB [Abate&Goré], LoTREC
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A short history of LoTREC

before 2000: theoretical bases (Luis Fariñas del Cerro, Olivier
Gasquet, Andreas Herzig)

David Fauthoux [2000]
rewriting kernel
event-based implementation
K, KT, KB

Mohamad Sahade [2002-2005]
loopchecking
more logics: S4, K4,. . .
general completeness and termination proofs

Bilal Said [2006-2010]
LTL, PDL. . .
Confluence & commutative patterns
Model checking
graph rewriting basis & their theoretical properties
GUI, full web accessibility, step-by-step run,. . .
. . .
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The black box
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User-defined language

Atomic propositions

constant symbols = Capital 1st letter words

Formulas

prefix notation (but can be displayed in infix form)
priority and associativity to avoid printing parentheses

Example (definition)
name arity display

not 1 ∼ _
and 2 _ & _
. . .
nec 1 [] _
pos 1 <> _
. . .

Example (usage)

pos P
displayed: <> P

and not Q not P
displayed: ∼ Q & ∼ P
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On paper

Truth conditions
+ as Graph rewriting rules

Structural constraints

M, w ° A ∧ B iff
M, w ° A and M, w ° B
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M, w ° 3A iff
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On paper

Truth conditions
+ as Graph rewriting rules

Structural constraints

Model is reflexive
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In LoTREC

Graph rewriting rule as “if Conditions ... then Actions”

Rule And

hasElement node and variable A variable B

add node variable A

add node variable B

End
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In LoTREC

Graph rewriting rule as “if Conditions ... then Actions”

Rule Pos

hasElement node1 pos variable A

createNewNode node2

link node1 node2 R

add node2 variable A

End
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Defining a language in LoTREC Tableau rules Strategies Do the algorithms do the right thing?

In LoTREC

Graph rewriting rule as “if Conditions ... then Actions”

Rule ReflexiveEdges

isNewNode node

link node node R

End
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Defining a language in LoTREC Tableau rules Strategies Do the algorithms do the right thing?

Semantics of rules: the basic idea

Apply rule to a graph G = apply to every formula in every node
=⇒ strategies get more declarative
=⇒ proofs get easier

Tableau rules expand directed graphs by

adding links

adding nodes

adding formulas

duplicating the graph

rule(G ) = {G1, . . . , Gn}
rule({G1, . . . ,Gn}) = rule(G1) ∪ . . . ∪ rule(Gn)

94 / 146



Defining a language in LoTREC Tableau rules Strategies Do the algorithms do the right thing?

Managing graph copies: depth-first
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Defining a language in LoTREC Tableau rules Strategies Do the algorithms do the right thing?

Why a strategy?

Apply rules in order:
Strategy performOnce

Stop

And

Or

...

Saturation:

Strategy CPL_strat

repeat

Stop

NotNot

And

Or

end

Strategy K_strat

repeat

CPL

Pos

Nec

end
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Defining a language in LoTREC Tableau rules Strategies Do the algorithms do the right thing?

Semantics of strategies

1 block: rule1 ... rulen ... anotherStrategy ...

apply all applicable rules in order then stop

Example

Strategy CPL

Stop

And

Or

Not_Not

...
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Defining a language in LoTREC Tableau rules Strategies Do the algorithms do the right thing?

Semantics of strategies

1 block: rule1 ... rulen ... anotherStrategy ...

apply all applicable rules in order then stop

2 repeat block end

repeat until no rule applicable (saturation)

Example

Strategy K

repeat

CPL

Pos

Nec

end

For simple logics: repeat and blocks are sufficient!
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Defining a language in LoTREC Tableau rules Strategies Do the algorithms do the right thing?

Semantics of strategies

1 block: rule1 ... rulen ... anotherStrategy ...

apply all applicable rules in order then stop

2 repeat block end

repeat until no rule applicable (saturation)

3 firstRule block end

apply first applicable rule, then stop (unfair!)
cf. higher-order proof assistants

Example

repeat

firstRule

rule1

rule2 x
end

end

rule1 is always applicable
rule2 is applicable
BUT never applied!
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Semantics of strategies

1 block: rule1 ... rulen ... anotherStrategy ...

apply all applicable rules in order then stop
2 repeat block end

repeat until no rule applicable (saturation)
3 firstRule block end

apply first applicable rule, then stop (unfair!)
cf. higher-order proof assistants

4 allRules block end

exactly as a “block”, but needed inside firstRule

Example firstRule

rule1

allRules

rule2

rule3

end

rule4

end 98 / 146



Defining a language in LoTREC Tableau rules Strategies Do the algorithms do the right thing?

Semantics of strategies

1 block: rule1 ... rulen ... anotherStrategy ...

apply all applicable rules in order then stop

2 repeat block end

repeat until no rule applicable (saturation)

3 firstRule block end

apply first applicable rule, then stop (unfair!)
cf. higher-order proof assistants

4 allRules block end

exactly as a “block”, but needed inside firstRule

5 applyOnce rule

apply the rule on only one occurrence
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Defining a language in LoTREC Tableau rules Strategies Do the algorithms do the right thing?

Tableaux: definition

The set of tableaux for formula A with strategy S is:
the set of graphs obtained by applying the strategy S
to an initial single-node graph whose root contains only A.

Notation: S(A)

Remark
our tableau = “tableau branch” in the literature
(sounds odd to call a graph a branch)
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Defining a language in LoTREC Tableau rules Strategies Do the algorithms do the right thing?

Open or Closed?

A node is closed iff it contains “FALSE”

A tableau is closed iff it has a closed node

A set of tableaux is closed iff all its elements are closed

An open tableau is a premodel
=⇒ build a model
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Defining a language in LoTREC Tableau rules Strategies Do the algorithms do the right thing?

Formal properties

To be proved for each strategy S :

Termination
For every A, S(A) terminates.

Soundness
If S(A) is closed then A is unsatisfiable.

Completeness
If S(A) is open then A is satisfiable.
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Defining a language in LoTREC Tableau rules Strategies Do the algorithms do the right thing?

In general. . .

Soundness proofs: easy (we just apply truth conditions)

Termination proofs: not so easy (case-by-case)

Completeness proofs...

. . . for fair strategies: standard techniques
work “in most cases”
but fair strategies do not terminate in general
. . . for terminating strategies: difficult
rigorous proofs rare even for the basic modal logics!
reason: strategy = imperative programming
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Defining a language in LoTREC Tableau rules Strategies Do the algorithms do the right thing?

In general. . .

BUT soundness + termination is practically sufficient (e.g. when
experimenting with a logic):

given: class of models C, strategy S , formula A

apply strategy S to A

take an open tableau and build pointed model (M, w)

check if M in desired class of models

check if M, w ° A
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Defining a language in LoTREC Tableau rules Strategies Do the algorithms do the right thing?

A general termination theorem

[O. Gasquet et al., AIML 2006]

IF for every rule ρ:
the RHS of ρ contains strict subformulas of its LHS
AND
some restriction on node creation

THEN
for every formula A:
the tableau construction terminates
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Defining a language in LoTREC Tableau rules Strategies Do the algorithms do the right thing?

Another general termination theorem

[O. Gasquet et al., AIML 2006]

IF for every rule ρ:
the RHS of ρ contains subformulas of its LHS
AND
some restriction on node creation
AND
some loop testing in the strategy

THEN
for every formula A:
the tableau construction terminates
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How to proceed

CPL: Classical Propositional Logic

1 From the menu bar, open:
=⇒ Logic =⇒ Predefined logics =⇒ CPL

2 Run: Build Premodels button

3 Why these results?

Predefined formula
Predefined main strategy

4 Review the logic definition: Connectors, Rules. . .

5 Change the formula

6 Re-run. . .
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Adding “↔”

What about formulas with “↔” operator?

1 Save as CPL locally as “CPL complete.xml”

2 Add to Connectors:
name arity display priority

equiv 2 _<->_ 0 (lowest)

3 Add to Rules:
Equiv, and NotEquiv

4 Call them in the strategy

5 Try some formulas. . .
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From CPL to K

Here: minimal set of operators ¬, ∧, 2 only

Rules of CPL

Rule for ¬2A:

for every ¬2A at every node w :
create a successor u and add ¬A to it

Rule for 2A:

for every 2A at every w , and for every R-successor u of w :
add A to u

Strategy: saturate with all the rules. . .
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Rules

Rule NotNec

hasElement w pos variable a

createNewNode u

link w u R

add u variable a

Rule Nec

hasElement w nec variable a

isLinked w u R

add u variable a
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Strategies

1 Continue with your “CPL complete.xml”,
or
Open Predefined logic =⇒ Others =⇒ CPL complete

2 Add the nec operator

3 Add the rules Nec and NotNec

4 Add a new strategy KStrategy which calls repeatedly
CPLStrategy and then the rules Pos and Nec

5 Test with [] P & <> Q & <> (R v ∼ P)
i.e. and nec P and pos Q pos or R not P

6 Test with other formulas...
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From K To Kn

Replace the operator 2 by [ ]

Change all the predefined formulae

Change the modal rules: Nec and NotNec

Rule Nec_K

hasElement w nec variable a

isLinked w u R

add u variable a

Rule Nec_Multimodal_K

hasElement w nec variable r

variable a

isLinked w u variable r

add u variable a
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How to proceed

1 From the task pane, open:
Open Predefined logic =⇒ Others =⇒ Multimodal-K

2 Check ¬[1]P ∧ ¬[2]¬P,. . .
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Description logic ALC

Notational variant:

write R instead of I (‘atomic role’)
write A instead of P (‘atomic concept’)
write C instead of A (‘complex concept’)
write u instead of ∧
write t instead of ∨
write ∀R.C instead of [I ]A
write ∃R.C instead of 〈I 〉A

In LoTREC: change operators and rules appropriately

Test concept satisfiability:
∃R.(A u A′) u ∀R.¬A
. . .

Test concept inclusion:
C1 v C2 iff C1 u ¬C2 unsatisfiable
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Outline of course

Part 1: Modelling with graphs
Part 2: Talking about models
Part 3: The model construction method: basics
Part 4: Logics with simple constraints on models
Part 5: Logics with potential cycles
Part 6: Model checking in LoTREC
Part 7: Logics with transitive closure
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Part 4:
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KD

From K to KT

Accessibility relation R is reflexive

Aim: close all tableaux for 2P ∧ ¬P (negation of axiom T)

Idea1: integrate reflexivity into the truth condition

M, w ° 2A iff M, w ° A, and M, u ° A for every u that is
accessible from w via R

Idea2: explicitly add reflexive edges to the graphs
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KD

From K to KT, ctd.

1 Save Monomodal-K as Monomodal-KT

2 Idea1: add new rule
Rule NecT

hasElement w nec variable a

add w variable a

3 Idea2: add new rule
Rule Reflexive_edges_for_R

isNewNode w

link w w R

4 Call new rule in the strategy

5 Check P ∧2¬P , P ∧22¬P,. . .
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Outline
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KD

From K to KD

Accessibility relation R is serial

Aim: close all tableaux for 2P ∧2¬P (negation of axiom D)

Naive idea: just add edges
Rule makeSerial

isNewNode w (match a node)

createNewNode u

link w u R

=⇒ will loop
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KD

From K to KD, ctd.

Accessibility relation R is serial

Idea: add edges only when needed and not created elsewhere
Rule makeSerial

hasElement w nec variable a

hasNotElement w not nec variable b

createNewNode u

link w u R

Call rule makeSerial in the strategy

Check 2P ∧2¬P . . . =⇒ sound but suboptimal

avoid too many successor nodes: apply makeSerial only once
applyOnce makeSerial
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Part 5: Logics with potential cycles

11 S4

12 Intuitionistic logic LJ
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From KT to S4

Accessibility relation R is reflexive and transitive (S4 = KT4)

Aim: close all tableaux for 2P ∧ ¬22P
(negation of axiom 4)

Idea1: integrate reflexivity and transitivity into the truth
condition

M, w ° 2A iff M, w ° A, and M, u ° 2A for every u that is
accessible from w via R

Idea2:. . .
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From KT to S4, ctd.

1 Save Monomodal-KT as Monomodal-S4

2 Copy/Paste rule Nec, and rename it as Nec4

3 Idea1:
Rule Nec4

hasElement node nec R variable a

isLinked node node’ R

add node’ nec R variable a

4 Check ¬(2P → 22P), i.e. 2P ∧ ¬22P

5 Test 2¬2P
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Taming S4

LoTREC loops on input formula 2¬2P!

Execute step-by-step (‘Step By Step’ instead of ‘Build
Premodels’ button)

Observe: if no clash wasn’t found after 2 nodes, there is no
chance to find it later
=⇒ no need to create successors for nodes that are included
in an ancestor!

hypothesis: nodes have been locally saturated before checking
for loops
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Taming S4, ctd.

Add the rule loopTest (cf. predefined S4 Optimal)

Rule loopTest

isNewNode node’ (required for local activation)

isAncestor node node’

contains node node’

mark node’ CONTAINED

link node’ node Loop (optional, highlights the inclusion)

add condition to rule NotNec:

hasElement node not nec A

isNotMarked node CONTAINED

. . .

Call rule loopTest in the strategy
guarantee that nodes are saturated before loopchecking:
call loopTest after the CPL rules and rule NecT

Run again. . .
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From S4 to intuitionistic logic LJ

Accessibility relation R is reflexive, transitive, and persistent
Truth conditions:
M,w ° A → B iff M, u 6° A or M, u ° B for all u s.th. wRu
M,w ° ¬A iff M, u 6° A for all u s.th. wRu
not valid: ¬¬A ↔ A; ¬(A ∧ B) ↔ ¬A ∨ ¬B; . . .

tableau method requires signed formulas
in LoTREC: define operators sTrue and sFalse

Rules for conjunction:

Rule sTrueAnd

hasElement w sTrue and variable a variable b

add w sTrue variable a

add w sTrue variable b

Rule sFalseAnd

hasElement w sFalse and variable a variable b

duplicate copiedgraph

add w sFalse variable a

add copiedgraph.w sFalse variable b 132 / 146
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From S4 to intuitionistic logic LJ, ctd.

Rules for implication:

Rule sFalseImp

hasElement w sFalse imp variable a variable b

isNotMarked w CONTAINED

createNewNode u

link w u R

add u sTrue variable a

add u sFalse variable b

Rule sTrueImpActual

hasElement w sTrue imp variable a variable b

add w sFalse variable a

add copiedgraph.w sTrue variable b

duplicate copiedgraph

Rule sTrueImpPropagation

hasElement w sTrue imp variable a variable b

isLinked w u R

add u sTrue imp variable a variable b

. . .
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From S4 to intuitionistic logic LJ, ctd.

Rule for true atoms (implements persistent R):

Rule sTrueAtom

hasElement w sTrue variable a

isAtomic variable a

isLinked w u R

add u sTrue variable a

Test:
((P → Q) → P) → P (Pierce’s formula)

Test:
¬¬P → P
P → ¬¬P
P ∨ ¬P
. . .

improve: use three signs. . .
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Part 6: Model checking in LoTREC

13 Model checking in LoTREC
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Model checking

Given M0, w0, and A0. . . do we have M0, w0 ° A0 ?

1. build model M0 with root w0 in LoTREC

createNewNode w0,
createNewNode u,
link w0 u R,
add u P,
add u Q,
. . .

2. add formula A0 to be checked to root note w0

add w0 isItTrue nec not P (add as dummy operator)

3. top-down: decomposition of A0

hasElement w isItTrue not variable A
add w isItTrue variable A

hasElement w isItTrue nec variable A
isLinked w u R
add u isItTrue variable A
. . . 137 / 146



Model checking, ctd.

4. bottom-up: build truth value of A0

hasElement w isItTrue variable A

isAtomic variable A

hasElement w variable A

markExpression w isItTrue variable A Yes

hasElement w isItTrue nec variable A

isLinked w u R

isMarkedExpression u isItTrue variable A No

markExpression w isItTrue nec variable A No

hasElement w isItTrue nec variable A

isLinked w u R

isMarkedExpressionInAllChildren w isItTrue variable A R Yes

markExpression w isItTrue nec variable A Yes
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PDL Suggestions

Propositional Dynamic Logic PDL

Language: complex programs Π, complex formulas A

Π ::= I | A? | Π;Π | Π ∪ Π | Π∗

A ::= P | ¬A | A ∧ A | A ∨ A | 〈Π〉A | [Π]A

where P ranges over P and I ranges over I
Interpretation of complex programs and formulas: defined by
mutual recursion

RA? = {〈w ,w〉 : M, w ° A}
RΠ1;Π2 = RΠ1 ◦ RΠ2

RΠ1∪Π2 = RΠ1 ∪ RΠ2

RΠ∗ = (RΠ)∗

M, w ° 〈Π〉A iff there is w ′ such that wRΠw ′ and M, w ′ ° A
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PDL Suggestions

PDL: taming the Kleene star

Problem: how to handle transitive closure?
Solution: postpone

M, w ° [Π∗]A iff M, w ° A ∧ [Π][Π∗]A
in LoTREC:

Rule Nec_Star

hasElement w nec star variable Pi variable A

add w variable A
add w nec variable Pi nec star variable Pi

variable A

Rule Pos_Star

hasElement w pos star variable Pi variable A

add w or variable A pos variable Pi pos . . .
termination: use looptesting

Observe: these rules don’t add subformulas
. . . but ‘almost’ subformulas (Fischer-Ladner closure)
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PDL Suggestions

PDL: taming the Kleene star, ctd.

A problem:

execute 〈I ∗〉P step-by-step
always choose the graph where the fulfillment of 〈I ∗〉P is
postponed
observe: terminates by looptest, but 〈I ∗〉P not fulfilled
=⇒ premodel cannot be transformed into a model of 〈I ∗〉P

Solution: check whether are all eventualities are fulfilled
=⇒ use model checking, v.s.
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PDL Suggestions

Outline

PDL
Suggestions
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PDL Suggestions

It is up to you...

S5; K +Universal operator

Confluence

LTL

. . .
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Thank you!
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