Kripke's Worlds

An introduction to modal logics via the tableau method

> Olivier Gasquet, Andreas Herzig, Bilal Said, François Schwarzentruber

Institut de Recherche en Informatique de Toulouse (IRIT) Université de Toulouse
http://www.irit.fr/~Andreas.Herzig/CTableaux

ESSLLI 2010, Copenhagen
1st week, foundational course

Classical propositional logic CPL in a slide

- Language:
- set \mathcal{P} of propositional variables P, Q, \ldots
- Boolean operators $\neg, \wedge, \vee, \rightarrow, \leftrightarrow, \uparrow, \ldots$
- (complex) formulas A, B, \ldots

■ Models:

- valuations $V \subseteq \mathcal{P}$
- Semantics:

■ truth conditions:

$$
V \Vdash A \rightarrow B \text { iff } V \Vdash A \text { or } V \Vdash B
$$

- A is CPL-valid $(\models \mathrm{CPL} A)$ iff for every valuation $V, V \Vdash A$

$$
\begin{array}{ll}
\models_{\mathrm{CPL}} P \vee \neg P & \models_{\mathrm{CPL}}((P \rightarrow Q) \rightarrow P) \rightarrow P \\
\models_{\mathrm{CPL}} \neg \neg P \rightarrow P & \models_{\mathrm{CPL}}(P \rightarrow Q) \leftrightarrow(\neg P \vee Q) \\
\models_{\mathrm{CPL}} P \rightarrow(Q \rightarrow P) & \ldots
\end{array}
$$

- A is CPL-satisfiable iff for some valuation $V, V \models A$

P
$P \rightarrow Q \wedge \neg(Q \rightarrow P)$

First-Order Logic FOL in two slides

■ Language:
■ object variables x, y, \ldots
■ Predicates: $R\left(t_{1}, \ldots, t_{n}\right)$
■ propositional variables $=$ predicates of arity 0
■ a particular binary predicate: equals $\left(t_{1}, t_{2}\right)$, written $t_{1}=t_{2}$
■ Complex formulas: built with CPL operators and $\forall x, \exists x$

$$
\exists y \forall x R(x, y) \rightarrow \forall x \exists y R(x, y)
$$

- Models:
- domain D (must be non-empty)

■ interpretation of an n-ary predicate: $I(R) \subseteq D^{n}$
■ interpretation of a variable: $I(x) \in D$

$$
I(\text { equals })=\{\langle d, d\rangle \mid d \in D\}
$$

First-Order Logic FOL in two slides (ctd.)

- Semantics:
- truth conditions:

$$
\begin{aligned}
& (D, I) \Vdash R\left(t_{1}, \ldots, t_{n}\right) \text { iff }\left\langle I\left(t_{1}\right), \ldots, I\left(t_{n}\right)\right\rangle \in I(R) \\
& (D, I) \Vdash \forall x A \text { iff }\left(D, I^{\prime}\right) \Vdash A \text { for all } x \text {-variants } I^{\prime} \text { of } I \\
& (D, I) \Vdash \exists x A \text { iff }\left(D, I^{\prime}\right) \Vdash A \text { for some } x \text {-variant } I^{\prime} \text { of } I
\end{aligned}
$$

where an x-variant of I interprets everything as I except for x

- A is FOL-valid $\left(\models_{\mathrm{FOL}} A\right)$ iff for every $\langle D, I\rangle,\langle D, I\rangle \Vdash A$

$$
\begin{array}{ll}
\models_{\text {FOL }} \forall x R(x) \rightarrow \exists x R(x) & \models_{\text {FOL }} \exists y \forall x R(x, y) \rightarrow \forall x \exists y R(x, y) \\
\models_{\text {FOL }} \exists x R(x) \leftrightarrow \neg \forall x \neg R(x) & \ldots
\end{array}
$$

- A is FOL-satisfiable iff ...

$$
\exists x R(x) \wedge \exists x \neg R(x) \quad \exists x R(x) \wedge \neg \forall x R(x)
$$

■ A is FOL-satisfiable iff $\neg A$ is FOL-invalid

The logic landscape

■ Classical Propositional Logic (CPL)

- validity problem decidable
- 'zero-order logic'

■ First-Order Logic (FOL)
■ validity problem semi-decidable:
■ if A is valid then the decision procedure will answer "yes";
■ if A is invalid then the decision procedure will either answer "no", or loop.
■ Second-Order Logic (SOL), Higher-Order Logics (HOL)

- undecidable
- 'in between': modal logics

■ infinitely many logics
■ 'many of them' are decidable ("surprisingly often")
but many of them are not: there are quite simple modal
logics that are semi-decidable or even undecidable!

The logic landscape

■ Classical Propositional Logic (CPL)

- validity problem decidable
- 'zero-order logic'
- First-Order Logic (FOL)
- validity problem semi-decidable:

■ if A is valid then the decision procedure will answer "yes";
■ if A is invalid then the decision procedure will either answer "no", or loop.
■ Second-Order Logic (SOL), Higher-Order Logics (HOL)

- undecidable
- 'in between': modal logics
- infinitely many logics
- 'many of them' are decidable ("surprisingly often")
- ... but many of them are not: there are quite simple modal logics that are semi-decidable or even undecidable!

Modal logics everywhere

- philosophical logic
- analysis of concepts: necessity and possibility; actions; knowledge; belief; desires, goals and intentions; obligation and permission; qualitative probability, ...
- artificial intelligence and multiagent systems

■ belief-desire-intention (BDI) agents, normative systems

- theoretical computer science
- proving properties of (possibly distributed) programs
- semantic web
- languages for relational structures (ontologies)
- mathematical logic
- logical systems between Classical Propositional Logic and First-Order Logic
\Longrightarrow formal reasoning in modal logics?

The zoo of reasoning methods

"Is formula A valid?"

- Classical Propositional Logic (CPL):

■ Hilbert-style axiomatics; natural deduction

- Gentzen sequent systems; tableau method
- resolution
- heuristic search (many SAT provers)

■ First-Order Logic (FOL):
■ resolution provers: OTTER, SPASS,...
■ Higher-Order Logic (HOL):

- Proof assistants (HOL, Isabelle, Coq,...)

Reasoning methods for modal logics

■ Hilbert-style axiomatics: [Lewis\&Langford 32], natural deduction [Prawitz 65]

- require creativity \Longrightarrow cannot be mechanized

■ Gentzen sequent systems: [Došen 85, Wansing 98 , Braüner 00, Negri 05, Brünnler 06]

■ 'decorate' proofs by labels \Longrightarrow gets close to semantics

- difficult to design for some logics (modal logic S5, etc.)
- Resolution: [Enjalbert\&Fariñas 89]
- problem: no simple normal forms in modal logics
- Translation to FOL and resolution: [Ohlbach 88, Fariñas\&Herzig 88, Auffray\&Enjalbert 89]; MSPASS prover
- problem: FOL is semi-decidable \Longrightarrow you have to prove that the translation codomain is a decidable fragment of FOL
- Methods integrating SAT provers for CPL with tableaux: [Giunchiglia\&Sebastiani 98]; K-SAT theorem prover

Reasoning methods for modal logics

■ Hilbert-style axiomatics: [Lewis\&Langford 32], natural deduction [Prawitz 65]

- require creativity \Longrightarrow cannot be mechanized

■ Gentzen sequent systems: [Došen 85, Wansing 98 , Braüner 00, Negri 05, Brünnler 06]

■ 'decorate' proofs by labels \Longrightarrow gets close to semantics

- difficult to design for some logics (modal logic S5, etc.)
- Resolution: [Enjalbert\&Fariñas 89]
- problem: no simple normal forms in modal logics
- Translation to FOL and resolution: [Ohlbach 88, Fariñas\&Herzig 88, Auffray\&Enjalbert 89]; MSPASS prover
- problem: FOL is semi-decidable \Longrightarrow you have to prove that the translation codomain is a decidable fragment of FOL
■ Methods integrating SAT provers for CPL with tableaux: [Giunchiglia\&Sebastiani 98]; K-SAT theorem prover
- Tableau methods [Fitting 83]

Tableau methods for modal logics

"Is there a model for formula A?"

■ Equivalent to validity checking:

- If there is a model for $\neg A$ then A is invalid.
- If there is no model for $\neg A$ then A is valid.
- Most general method: can be designed for 'almost all' modal logics
■ Most successful method: tableau provers often match the complexity bounds
- Basic idea of the method: try to build a model by applying the truth conditions

Tableau methods for modal logics

$$
\text { "Is there a model for formula } A \text { ?" }
$$

- Equivalent to validity checking:
- If there is a model for $\neg A$ then A is invalid.
- If there is no model for $\neg A$ then A is valid.
- Most general method: can be designed for 'almost all' modal logics
■ Most successful method: tableau provers often match the complexity bounds
- Basic idea of the method: try to build a model by applying the truth conditions
\Longrightarrow close to semantics

The idea of this course

Introduce the most important modal logics
...via the tableau method
. . . step-by-step
... using an implemented tableau prover: LoTREC

Related courses at ESSLLI 2010

■ Lutz Strassburger: Introduction to Proof Theory (introductory, 1st week)
■ Hans van Ditmarsch: Dynamic epistemic logic (introductory, 2nd week)
■ Jan Broersen and Leon van der Torre: Ten problems of deontic logic and normative reasoning in computer science (foundational, 1st week)

- Johan van Benthem and Eric Pacuit: Logic, Rationality, and Intelligent Interaction (workshop, 2nd week)

About the course title

Tarski's World: introduction to FOL
■ Alfred Tarski

- examples $=$ scenarios from geometry
- resources:
- book [Barwise\&Etchemendy 91, 93, Barker-Plummer, B\&E 04]
- program (CD)

Kripke's Worlds: introduction to modal logics
■ Saul Kripke
■ examples $=$ modal logics
■ resources:
■ this course

- book (to come)

■ program: LoTREC http://www.irit.fr/Lotrec online execution and download

Early history: les tableaux de Monsieur Toulouse-LauTREC

Outline of course

Part 1: Modelling with graphs
Part 2: Talking about models
Part 3: The model construction method: basics
Part 4: Logics with simple constraints on models
Part 5: Logics with potential cycles
Part 6: Model checking in LoTREC
Part 7: Logics with transitive closure

Part 1: Modelling with graphs

1 Kripke models as graphs

2 Classes of models

Kripke Model [Kripke 59]

Given: a set \mathcal{P} (propositional variables) and a set \mathcal{I} (indexes)

- $M=(W, R, V)$
- W : nonempty set
- $R: \mathcal{I} \longrightarrow 2^{W \times W}$

■ $V: W \longrightarrow 2^{\mathcal{P}}$

(possible worlds)
(accessibility relation)
(valuation function)

■ Pointed model (M, w), where $w \in W$ is the actual world

Kripke models: terminologies

■ Possible worlds = graph nodes objects, states

- Valuation = node labeling interpretation
- Accessibility relation = edge labeling transitions
■ Kripke model = labeled graph relational model, transition system

What is R ?

- Relation between objects: $w R u$ iff w is related to u
- Alethic:
$w R u$ iff u is possible given the actual world w
- Temporal:
$w R u$ iff u is in the future of w
- Epistemic:
$w R_{l} u$ iff u is possible for agent I at actual world w
- Deontic: $w R u$ iff u is an ideal counterpart of the actual world w
- Dynamic:
$w R_{l} u$ iff u is a possible result of the occurrence of the event / / execution of the program / in w

What is R ?

- Relation between objects: $w R u$ iff w is related to u
- Alethic:
$w R u$ iff u is possible given the actual world w
- Temporal:
$w R u$ iff u is in the future of w
- Epistemic:
$w R_{l} u$ iff u is possible for agent I at actual world w
- Deontic: $w R u$ iff u is an ideal counterpart of the actual world w
■ Dynamic:
$w R_{l} u$ iff u is a possible result of the occurrence of the event $/$ / execution of the program I in w

Readings of $R \Longrightarrow$ Properties of R

Actions: the Yale Shooting Problem

A famous scenario [Hanks\&McDermott 87]:

- A turkey is initially alive $(A I)$ and a gun is initially unloaded $(\neg L d)$.
- The actions are 'loading the gun', 'waiting for a moment', 'shooting the gun at the turkey' (which is expected to kill the turkey).

Observe: $R_{\text {wait }}$ reflexive (= ‘skip’ program)

Knowledge: muddy children (1)

A famous puzzle:

1. two children come back from the garden, both with mud on their forehead; their father looks at them and says:
"at least one of you has mud on his forehead" then he asks:
"those who know whether they are dirty, step forward!"
2. nobody steps forward
3. the father asks again:
"those who know whether they are dirty, step forward!"
4. both simultaneously answer: "I know!"
\Longrightarrow model the situation before the father's command

Knowledge: muddy children (2)

■ Node labels $=$ propositional variables:
$M d_{1}=$ "child 1 is muddy", etc.
■ Edge labels = accessibility relations:
$u R_{2} v=$ "child 2 cannot distinguish u and v ", etc.
The set of possible worlds and the accessibility relation in the initial situation:

Knowledge: muddy children (2)

■ Node labels $=$ propositional variables:
$M d_{1}=$ "child 1 is muddy", etc.
■ Edge labels = accessibility relations:
$u R_{2} v=$ "child 2 cannot distinguish u and v ", etc.
The set of possible worlds and the accessibility relation in the initial situation: ...

Knowledge: muddy children (3)

The set of possible worlds and the accessibility relation in the initial situation (before the father announces $M d_{1} \vee M d_{2}$):

Observe: R_{1} and R_{2} are equivalence relations: reflexive, transitive and symmetric
The situation after the father announced $M d_{1} \vee M d_{2}$:

Knowledge: muddy children (3)

The set of possible worlds and the accessibility relation in the initial situation (before the father announces $M d_{1} \vee M d_{2}$):

Observe: R_{1} and R_{2} are equivalence relations: reflexive, transitive and symmetric
The situation after the father announced $M d_{1} \vee M d_{2}: \ldots$

Knowledge: muddy children (4)

The set of possible worlds and the accessibility relation after the father announced $M d_{1} \vee M d_{2}$:

The situation after the first round (when none of the children stepped forward)

Knowledge: muddy children (4)

The set of possible worlds and the accessibility relation after the father announced $M d_{1} \vee M d_{2}$:

The situation after the first round (when none of the children stepped forward)...
N.B.: can be generalized to an arbitrary number $n \geq 2$ of children

Knowledge: and now for something different

Example (thanks T. de Lima)

There are n stairs and n agents $1, \ldots, n$.
On every step k stands agent k.
Each agent wears a hat that is either black or white.
Agent k can see the hats of the agents $I>k$.
Agent k cannot see the hats of the agents $\leq k$.

Agents are only able to announce "black" or "white"
Find a sequence of n announcements such that at least $n-1$
agents correctly announce the colour of their own hat (they can
discuss beforehand)

Knowledge: and now for something different

Example (thanks T. de Lima)

There are n stairs and n agents $1, \ldots, n$.
On every step k stands agent k.
Each agent wears a hat that is either black or white.
Agent k can see the hats of the agents $l>k$.
Agent k cannot see the hats of the agents $\leq k$.

Agents are only able to announce "black" or "white".
Find a sequence of n announcements such that at least $n-1$ agents correctly announce the colour of their own hat (they can discuss beforehand).

Belief: the earth is flat

A historical example [1630]: "The Pope believes the earth is flat."
■ Node labels: Sphere $=$ "Earth is a sphere"

- Edge labels:

$$
u R_{\text {Pope }} v=\text { "at } u, v \text { is compatible with Pope's beliefs" }
$$

Observe: $R_{\text {Pope }}$ is not reflexive; is transitive and Euclidean (for all u, v_{1}, v_{2}, if $u R v_{1}$ and $u R v_{2}$ then $\left.v_{1} R v_{2}\right)$

Obligations

An actual example (since 2008 in France): "It is forbidden to smoke in restaurants."

■ Node labels: Smoke = "somebody is smoking"
■ Edge labels:
$u R v=$ " v is a world where everything obligatory in u is true", " v is an ideal world w.r.t. u ", "at u, v is a permitted state"

Observe: R is not reflexive; should not necessarily be transitive; is serial (for all u there is v such that $u R v$)

Knowledge and obligations: the norm-violating muddy children

Exercise
Add to the muddy children scenario:
"none of the children should be muddy"

In your Kripke model, do the children know that it is obligatory to be clean? If so, find a Kripke model where they do not know that obligation.

In your new Kripke model, does child 1 know that child 2 does not know the obligation? If so,

Knowledge and obligations: the norm-violating muddy children

Exercise
Add to the muddy children scenario:
"none of the children should be muddy"

In your Kripke model, do the children know that it is obligatory to be clean? If so, find a Kripke model where they do not know that obligation.

In your new Kripke model, does child 1 know that child 2 does not
know the obligation? If so,

Knowledge and obligations: the norm-violating muddy children

Exercise

Add to the muddy children scenario:
"none of the children should be muddy"

In your Kripke model, do the children know that it is obligatory to be clean? If so, find a Kripke model where they do not know that obligation.

In your new Kripke model, does child 1 know that child 2 does not know the obligation? If so, ...

Building a graph in LoTREC

1 http://www.irit.fr/Lotrec

■ or, Download \Longrightarrow Executable to get LoTREC_2.0.zip

- unzip, then run file run.bat

2 Open a new logic (menu 'Logic')
3 Add a new rule ('Rules' tab):
■ no conditions

- in the action part: createNewNode w createNewNode u link w u R add w P
(capital first letter \Longrightarrow constant, small first letter \Longrightarrow variable)
4 Edit the default strategy ('Strategies' tab):
■ call the new rule (double click)
5 Click on "Build Premodels"

Part 1: Modelling with graphs

1 Kripke models as graphs

2 Classes of models

Classes of models

- A class of models can be defined by
- constraints on the accessibility relation
- constraints on the valuation
- Constraints depend on the concepts we want to model
- time
- events, programs
- actions
- knowledge
- belief
- obligations

■ Mathematical properties?

- satisfiability in class decidable?
- complexity?

Constraints on a single relation R

■ Transitive

- Reflexive

■ Serial: for all u exists v s.th. $u R v$
■ Deterministic: for all u, v_{1}, v_{2}, if $u R v_{1}$ and $u R v_{2}$ then $v_{1}=v_{2}$
■ Euclidean: for all u, v_{1}, v_{2}, if $u R v_{1}$ and $u R v_{2}$ then $v_{1} R v_{2}$
\square Linear: for all u, v_{1}, v_{2}, if $u R v_{1}$ and $u R v_{2}$ then $v_{1} R v_{2}$ or $v_{2} R v_{1}$

- Symmetric

■ Equivalence relation: reflexive, transitive, symmetric

- Confluent (Church-Rosser)
- no infinite R-chain (conversely well-founded)
- Universal: $R=W \times W$
- Singleton models: $\{M: \operatorname{card}(W)=1\}$

Constraints involving several relations

- Inclusion: $R_{I} \subseteq R_{J}$

■ Union: $R_{I}=R_{J} \cup R_{K}$

- Converse: $R_{J}=\left(R_{I}\right)^{-1}$

■ Reflexive and transitive closure: $R_{J}=\left(R_{l}\right)^{*}$
■ Permutation: $R_{I} \circ R_{J} \subseteq R_{J} \circ R_{I}$
■ Confluence: ...

Constraints on the valuation V

■ names for worlds: if $N \in V(w)$ and $N \in V(u)$ then $w=u$

- 'nominals' (hybrid logic)
- 'objects' (description logics)
- R is persistent (alias hereditary): if $P \in V(w)$ and $w R u$ then $P \in V(u)$
- intuitionistic implication

Time: constraints

- 'the (non-strict) future includes the present'
$\Longrightarrow R$ reflexive
- 'strict future excludes the present'
$\Longrightarrow R$ irreflexive
- 'future of future is future'
$\Longrightarrow R$ transitive
■ 'there is always a future state'
$\Longrightarrow R$ serial
- 'time is linear'
$\Longrightarrow R$ linear
- 'time will come to an end'
\Longrightarrow no infinite R-chain (conversely well-founded)
■ $R_{I}=$ 'future', $R_{J}=$ 'past' (or: $R_{I}=$ 'tomorrow', $R_{J}=$ 'yesterday')
- $R_{J}=\left(R_{l}\right)^{-1}$
- $R_{I}=$ 'future', $R_{J}=$ 'next'
- $R_{I}=\left(R_{J}\right)^{*}$

Knowledge: constraints

- $R=$ 'indistinguishability'
\Longrightarrow Equivalence relation:
- reflexive ('knowledge is true'), transitive ('I know what I know'), Euclidean ('I know what I don't know')
- same as: reflexive, transitive, and symmetric

■ Confluence instead of Euclideanity [Lenzen]

Belief: constraints

- actual world not necessarily in the worlds compatible with the agent's belief
$\Longrightarrow R$ not necessarily reflexive
- transitive, Euclidean, serial

Programs and events: constraints

■ $I_{3}=$ 'nondeterministic composition of programs I_{1} and I_{2} '
$\Longrightarrow R_{l_{3}}=R_{l_{1}} \cup R_{l_{2}}$
■ $I_{2}=$ 'execution of program I_{1} the other way round'
$\Longrightarrow R_{l_{2}}=\left(R_{l_{1}}\right)^{-1}$
■ $I_{2}=$ 'iteration of program $I_{1}{ }^{\prime}$
$\Longrightarrow R_{l_{2}}=\left(R_{l_{1}}\right)^{*}$

Knowledge and events: constraints

$R_{I}=$ effect of event I
$R_{J}=$ indistinguishable for agent J

■ 'no forgetting' (alias 'perfect recall')
$\Longrightarrow R_{I} \circ R_{J} \subseteq R_{J} \circ R_{I}$

■ 'no learning' (alias 'no miracles')
$\Longrightarrow R_{J} \circ R_{I} \subseteq R_{I} \circ R_{J}$

Closing under constraints in LoTREC

■ Add a rule ('Rules' tab) which closes under reflexivity: condition: isNewNode w action: link w w R (capital first letter \Longrightarrow constant, small first letter \Longrightarrow variable)

- Exercise: close R under transitivity

■ Exercise: make R persistent

Outline of course

Part 1: Modelling with graphs
Part 2: Talking about models
Part 3: The model construction method: basics
Part 4: Logics with simple constraints on models
Part 5: Logics with potential cycles
Part 6: Model checking in LoTREC
Part 7: Logics with transitive closure

Part 2: Talking about models

3 The modal language

4 Truth conditions

5 Reasoning in modal logics

6 The standard translation

Talking about graphs in the first-order language

- In the language of First-Order Logic FOL:
- nodes = variables
- unary predicates for the node labels
- binary predicates for the edge labels
- quantify over nodes

Examples
$\exists w\left(M d_{1}(w) \wedge M d_{2}(w)\right)$
$\exists w\left(\neg M d_{1}(w) \wedge \neg M d_{2}(w)\right)$
$\forall w\left(\exists u\left(R_{1}(w, u) \wedge M d_{1}(u)\right) \wedge \exists u\left(R_{1}(w, u) \wedge \neg M d_{1}(u)\right)\right)$
$\forall w\left(M d_{1}(w) \rightarrow \neg M d_{2}(w)\right)$
(after father's announcement)
$\forall w\left(R_{\text {load }}(w, u) \rightarrow L d(u)\right) \forall w\left(\left(L d(w) \wedge R_{\text {shoot }}(w, u)\right) \rightarrow \neg A l(u)\right)$

Talking about graphs in a modal language

■ Don't mention nodes, only talk about their properties

- View the graph locally (sitting at a node)

■ " P " means " P labels the actual node"

- $\square_{l} P$ means " P labels every node accessible from the actual node via an edge labeled l "

\square load $L d$	(Yale Shooting Problem)
$\square 1 M d_{2}$	(Muddy Children Puzzle)

■ $\diamond_{1} P$ means " P labels some node accessible from the actual node via an edge labeled I "

$$
\begin{aligned}
& \diamond_{\text {load }} L d \\
& \diamond_{1} M d_{1}
\end{aligned}
$$

- use Boolean operators

Talking about graphs in a modal language

■ Don't mention nodes, only talk about their properties
■ View the graph locally (sitting at a node)

- " P " means " P labels the actual node"
- $\square_{l} P$ means " P labels every node accessible from the actual node via an edge labeled l "
\square load $L d$
$\square{ }_{1} M_{2}$
(Yale Shooting Problem)
(Muddy Children Puzzle)
- $\diamond_{1} P$ means " P labels some node accessible from the actual node via an edge labeled l "

$$
\begin{aligned}
& \diamond_{\text {load }} L d \\
& \diamond_{1} M d_{1}
\end{aligned}
$$

- use Boolean operators

```
\(\neg \diamond_{1} M d_{2}\)
                                    (in the actual world)
\(\diamond_{1} M d_{1} \wedge \diamond_{1} \neg M d_{1}\)
\(\square_{1}\left(M d_{1} \vee M d_{2}\right) \quad\left(\right.\) after the father has announced \(\left.M d_{1} \vee M d_{2}\right)\)
\(\square_{l} P \rightarrow \diamond_{I} P\)
```


Reading the modal operators: necessity and possibility

- Monomodal (just one operator)

$$
\begin{aligned}
& \diamond A=\mathrm{M} A=" A \text { is possible" } \\
& \square A=\mathrm{L} A=" A \text { is necessary" }
\end{aligned}
$$

- Multimodal version:
$\diamond_{I} A=\langle I\rangle A=$ " A is possible w.r.t. $I "$
$\square_{I} A=[I] A=\ldots$

Necessity and possibility: two different usages

1 Logical/metaphysical/... necessity and possibility \Longrightarrow modal logic in the narrow sense

2 Any expression that is used to qualify the truth of a judgement Example: "it is raining":

- "it will always rain"
(temporal)
■ "it will sometimes rain"
(temporal)
- "it will rain tomorrow" (temporal)
- "it is known that it is raining"
(epistemic)
- "it is believed that it is raining"
- "it will rain after sunset"
- "it should be the case that it is raining"
(dynamic)
- "it is permitted that it is raining"
- ...
(deontic)
Common feature: not truth-functional
- no function f s.th. truthvalue $(\diamond A)=f($ truthvalue $(A))$
\Longrightarrow modal logics in the large sense

Temporal operators

$\mathrm{F} A$	$=$ " A will be true at some time point in the future"
	$=" A$ will eventually be true"
$\mathrm{G} A$	$=$ " A will be true at every time point in the future"
	$=$ " A will be true henceforth"
$\mathrm{P} A$	$=$ " A was true at some time point in the past"
$\mathrm{H} A$	$=$ " A was true at every time point in the past"
$A \mathrm{U} B$	$=" A$ until $B "$
$A \mathrm{~B} B$	$=" A$ before $B "$
$A S B$	$=" A$ since B "
$\mathrm{X} A$	$=" A$ will be true at the next time point"

N.B.: GA should imply FA, and HA should imply PA

Dynamic operators

After, $A=$ " A will be true after every possible execution of program I"
$=[I] A$
Feasible, $A=$ " A will be true after some execution of program I"
$=\langle I\rangle A$
N.B.: programs may be nondeterministic; Feasible, A does not imply After, A

Epistemic and doxastic operators

■ episteme $=\epsilon \pi \iota \sigma \tau \eta \mu \eta=$ 'know' (Greek)
■ doxa $=\delta o \xi \alpha=$ 'believe' (Greek)
$\operatorname{Bel}_{l} A=$ "agent I believes that A "
$=\quad " A$ is true in all possible worlds compatible with what / believes"
$\mathrm{K}_{I} A=$ "agent $/$ knows that A "
$=\quad " A$ is true in all possible worlds compatible with what / knows"
$\hat{\operatorname{Bel}_{l} A}=$ " A is compatible with I's beliefs"
$\hat{\mathrm{K}}_{I} A=$ " A is compatible with I's knowledge"
N.B.: $\mathrm{K}_{l} A$ should imply $\mathrm{Bel}_{l} A$

Deontic operators

■ $\delta \epsilon \circ \nu=$ "binding" (Greek)
$\mathrm{O} A=$ " A is obligatory"
$\mathrm{P} A=$ " A is permitted"
$\ldots=$ " A is forbidden" $=\neg \mathrm{P} A$
$\ldots=$ " A is omissible" $=\neg \mathrm{O} A$

Can be relative to a normative system: $\mathrm{O}_{\text {France }} \neg$ Smoke, but $\neg \mathrm{O}_{\text {Portugal }} \neg$ Smoke

Can be relative to an agent (personal obligation)
N.B.: OA should imply PA

Mixing several kinds of operators

■ Epistemic and event operators [Plaza, Baltag\&Moss, Gerbrandy, van Ditmarsch, van der Hoek\&Kooi,...]: $\neg \mathrm{K}_{1} M d_{1} \wedge$ After $_{M d_{1}!} \mathrm{K}_{1} M d_{1}$
(event $=$ announcement of $\left.M d_{1}\right)$
$\neg \mathrm{K}_{1} M d_{1} \wedge$ After $_{\neg \mathrm{K}_{2} M d_{2}!} \mathrm{K}_{1} M d_{1}$
■ Epistemic and temporal operators [Fagin, Halpern, Moses, Vardi]:

■ Doxastic and temporal operators:

■ Epistemic and deontic operators:
$\mathrm{O}_{\text {France }} \neg$ Smoke $\wedge \neg \mathrm{K}_{\text {/ }} \mathrm{O}_{\text {France }} \neg$ Smoke
\Longrightarrow Multi-dimensional modal logics

Mixing several kinds of operators

■ Epistemic and event operators [Plaza, Baltag\&Moss, Gerbrandy, van Ditmarsch, van der Hoek\&Kooi,...]: $\neg \mathrm{K}_{1} M d_{1} \wedge$ After $_{M d_{1}!} \mathrm{K}_{1} M d_{1}$
(event $=$ announcement of $\left.M d_{1}\right)$
$\neg \mathrm{K}_{1} M d_{1} \wedge$ After $_{\neg \mathrm{K}_{2} M d_{2}!} \mathrm{K}_{1} M d_{1}$
■ Epistemic and temporal operators [Fagin, Halpern, Moses, Vardi]:

- Doxastic and temporal operators:

■ Epistemic and deontic operators:
$\mathrm{O}_{\text {France }} \neg$ Smoke $\wedge \neg \mathrm{K}_{\text {/ }} \mathrm{O}_{\text {France }} \neg$ Smoke
\Longrightarrow Multi-dimensional modal logics

Implications, implications . . .

- Strict implication [Lewis\&Langford]
$A \prec B=$ " A strictly implies B "
■ like \rightarrow, but $A \prec(B \prec A)$ invalid
- $=\square(A \rightarrow B)$
- Intuitionistic implication [Brouwer, Gödel, Kripke]
$A \Rightarrow B=$ " A intuitionistically implies B "
- like \rightarrow, but excluded middle $A \vee(A \Rightarrow \perp)$, ... invalid
- Conditional [Lewis]
$A \mapsto B=$ "if A then B "
- like \Rightarrow, but strengthening in the antecedent

$$
(A \longmapsto B) \rightarrow((A \wedge C) \amalg B) \text { invalid }
$$

- Conditional obligation [Chellas,...]
$\mathrm{O}(A \mid B)=$ "it ought to be that if A, then B "
- $\mathrm{O}(A \mid B)$ different from $\mathrm{O}(A \rightarrow B)$

Duality

■ Intuitively:

$$
\begin{array}{lll}
\hat{\mathrm{K}}_{I} A & \leftrightarrow & \neg \mathrm{~K}_{I} \neg A \\
\mathrm{P}_{I} A & \leftrightarrow & \mathrm{O}_{I} \neg A \\
\mathrm{FA} & \leftrightarrow & \neg \neg A \\
\text { After }_{I} A & \leftrightarrow & \neg \text { Feasible }_{I} \neg A
\end{array}
$$

- Abstracting:
$\diamond_{1} A \leftrightarrow \quad \neg \square \neg A$
$\square_{1} A \leftrightarrow \quad \neg \diamond_{1} \neg A$
- Options for the choice of the primitives:

■ take both \diamond_{l} and \square_{l} as primitive

- take \diamond_{1} as primitive, and set $\square_{1} A \xlongequal{\text { def }} \neg \diamond_{1} \neg A$
- take \square_{I} as primitive, and set $\diamond_{I} A \stackrel{\text { def }}{=} \neg \square, \neg A$

Duality

- Intuitively:

$$
\begin{array}{lll}
\hat{\mathrm{K}}_{I} A & \leftrightarrow & \neg \mathrm{~K}_{I} \neg A \\
\mathrm{P}_{I} A & \leftrightarrow & \mathrm{O}_{I} \neg A \\
\mathrm{FA} & \leftrightarrow & \neg \neg A \\
\text { After }_{I} A & \leftrightarrow & \neg \text { Feasible }_{I} \neg A
\end{array}
$$

- Abstracting:
$\diamond_{1} A \quad \leftrightarrow \quad \neg \square \neg \neg A$
$\square_{1} A \leftrightarrow \quad \neg \diamond_{1} \neg A$
- Options for the choice of the primitives:
- take both \diamond_{I} and \square_{l} as primitive
- take \diamond_{1} as primitive, and set $\square_{1} A \stackrel{\text { def }}{=} \neg \diamond_{1} \neg A$
- take \square_{l} as primitive, and set $\diamond_{I} A \stackrel{\text { def }}{=} \neg \square, \neg A$

How define a language?

■ Set of node labels $\mathcal{P}=\{P, Q, \ldots\} \quad$ ('propositional variables')
■ Set of edge labels $\mathcal{I}=\{I, J, \ldots\}$
('indexes')
■ Language $=$ set of well-formed formulas

- Language is defined by BNF:

$$
A::=P|\neg A| A \wedge A|A \vee A|\langle I\rangle A \mid[I] A
$$

where P ranges over \mathcal{P} and $/$ ranges over \mathcal{I}
(unary modal operators only)

- Convention: when $\mathcal{I}=\{I\}$ then
- write $\square A$ instead of $[I] A$
- write $\diamond A$ instead of $\langle I\rangle A$

How define a language in LoTREC?

- Prenex form: a LoTREC formula is
- a propositional variable P, or
- an expression of the form $\operatorname{op}\left(\operatorname{Arg}_{1}, \ldots, \operatorname{Arg}_{n}\right)$ where
- $o p$ is the name of a logical operator
- the Arg_{i} are either formulas or in the index set \mathcal{I}

$$
\begin{aligned}
\neg A & =\operatorname{not}(A) \\
A \wedge B & =\operatorname{and}(A, B) \\
A \vee B & =\operatorname{or}(A, B)
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Bel}_{I} A & =\operatorname{Bel}(I, A) \\
\mathrm{K}_{I} A & =\operatorname{Knows}(I, A) \\
\hat{\mathrm{K}}_{I} A & =\operatorname{Poss}(I, A) \\
& \cdots \\
A \mathrm{U} B & =\operatorname{Until}(A, B) \\
& \cdots \\
A \Rightarrow B & =\operatorname{ifThen}(A, B)
\end{aligned}
$$

N.B.: may write op $\operatorname{Arg}_{1} \ldots \operatorname{Arg}_{n}$ (parentheses not needed)

- Adding a new connector:
'Connectors' tab \Longrightarrow name, arity, display mode

Part 2: Talking about models

3 The modal language

4 Truth conditions

5 Reasoning in modal logics

6 The standard translation

Truth conditions

Evaluate a formula A in a pointed model (M, w), where $M=(W, R, V)$ and $w \in W$ ('the actual world')

- Atoms

■ $M, w \Vdash P$ iff $P \in V(w)$
■ Boolean operators
■ $M, w \Vdash \neg A$ iff $M, w \Vdash A$
■ $M, w \Vdash A \wedge B$ iff $M, w \Vdash A$ and $M, w \Vdash B$
■ $M, w \Vdash A \vee B$ iff \ldots

■ Modal operators

- $M, w \Vdash \diamond A$ iff there exists u s.th. $w R u$ and $M, u \Vdash A$

■ $M, w \Vdash \square A$ iff for all u, if $w R u$ then $M, u \Vdash A$

Truth conditions

Example

For the pointed model (M, w)

(actual world underlined) we have:
$M, w \Vdash P$
$M, w \Vdash \diamond \neg P$
$M, w \Vdash \square \diamond \neg P$
But: $M, w \Vdash \square P$.

Truth conditions

- Multi-modal operators
- $M, w \Vdash\langle I\rangle A$ iff there exists u s.th. $w R_{I} u$ and $M, u \Vdash A$
- $M, w \Vdash[/] A$ iff \ldots
- Relation algebra operators

■ $M, w \Vdash\left\langle I^{-1}\right\rangle A$ iff there is u s.th. $w R_{l}^{-1} u$ and $M, u \Vdash A$

- $M, w \Vdash\langle I \cup J\rangle A$ iff there is u s.th. $w\left(R_{I} \cup R_{J}\right) u$ and $M, u \Vdash A$

■ $M, w \Vdash\left\langle I^{*}\right\rangle A$ iff there is u s.th. $w\left(R_{l}\right)^{*} u$ and $M, u \Vdash A$

Truth conditions

- Temporal operators (linear time)
$\square M, w \Vdash \mathrm{X} A \quad$ iff there exists u s.th. $w R u$ and $M, u \Vdash A$
$■ M, w \Vdash F A$ iff there exists n, u s.th. $w R^{n} u$ and $M, u \Vdash A$
■ $M, w \Vdash A \mathrm{UB}$ iff there exists u s.th. $w R^{*} u$ and
- $M, u \Vdash B$

■ $M, v \Vdash A$ for all v s.th. $\left(w R^{*} v\right.$ and $\left.v R^{+} u\right)$

- Implications

■ $M, w \Vdash A \Rightarrow B$ iff for all u, if $w R u$ then $M, u \nVdash A$ or $M, u \Vdash B$ (both for strict and intuitionistic implication; difference: preservation condition)
■ $M, w \Vdash A \longmapsto B$ iff for all u, if $u \in \min _{R}(\{v \mid w R v$ and $M, v \Vdash A\})$ then $M, u \Vdash B$ (conditional)

Talking about actions

The Yale Shooting Problem:

$M, w \Vdash$ After $_{\text {load }}$ After $_{\text {wait }}$ After $_{\text {shoot }} \neg A l$
$M, w \Vdash$ After $_{\text {shoot }} \perp$
$M, w \Vdash$ After $_{\text {load }} \neg$ After $_{\text {shoot }} \perp$

Talking about knowledge (1)

Muddy children puzzle, initial situation:

$M, w \Vdash \mathrm{~K}_{1} M d_{2}$
$M, w \Vdash \hat{\mathrm{~K}}_{1} M d_{1} \wedge \hat{\mathrm{~K}}_{1} \neg M d_{1}$
$M, w \Vdash \hat{\mathrm{~K}}_{1} \hat{\mathrm{~K}}_{2}\left(\neg M d_{1} \wedge \neg M d_{2}\right)$

Talking about knowledge (2)

Muddy children puzzle, after father has announced $M d_{1} \vee M d_{2}$:

$M, w \Vdash \hat{\mathrm{~K}}_{1} \hat{\mathrm{~K}}_{2}\left(\neg M d_{1} \wedge \neg M d_{2}\right)$
$M, w \Vdash \mathrm{~K}_{1} \mathrm{~K}_{2}\left(M d_{1} \vee M d_{2}\right)$
$M, w \Vdash \mathrm{~K}_{1} M d_{1}$

Talking about knowledge (3)

Muddy children puzzle, after the first round (when none of the children stepped forward):

```
\(M, w \Vdash \mathrm{~K}_{1}\left(M d_{1} \wedge M d_{2}\right) \wedge \mathrm{K}_{2}\left(M d_{1} \wedge M d_{2}\right)\)
\(M, w \Vdash \mathrm{~K}_{1} \mathrm{~K}_{2}\left(M d_{1} \wedge M d_{2}\right) \wedge \mathrm{K}_{2} \mathrm{~K}_{1}\left(M d_{1} \wedge M d_{2}\right) \wedge\)
\(M, w \Vdash \mathrm{~K}_{1} \mathrm{~K}_{2} \mathrm{~K}_{1}\left(M d_{1} \wedge M d_{2}\right) \wedge \mathrm{K}_{2} \mathrm{~K}_{1} \mathrm{~K}_{2}\left(M d_{1} \wedge M d_{2}\right)\)
\(M, w \Vdash \mathrm{~K}_{1} \mathrm{~K}_{2} \mathrm{~K}_{1} \mathrm{~K}_{2}\left(M d_{1} \wedge M d_{2}\right) \wedge \ldots\)
```

$M, w \Vdash \mathrm{CK}_{\{1,2\}}\left(M d_{1} \wedge M d_{2}\right)$
(common knowledge)
Truth condition:

Talking about knowledge (3)

Muddy children puzzle, after the first round (when none of the children stepped forward):

```
M,w\Vdash K K (Md 
M,w\Vdash K K K K (Md 
M,w\Vdash K K K K K K ( }M\mp@subsup{d}{1}{}\wedgeM\mp@subsup{d}{2}{})\wedge\mp@subsup{\textrm{K}}{2}{}\mp@subsup{\textrm{K}}{1}{}\mp@subsup{\textrm{K}}{2}{}(M\mp@subsup{d}{1}{}\wedgeM\mp@subsup{d}{2}{}
M,w\Vdash K
```

$M, w \Vdash \mathrm{CK}_{\{1,2\}}\left(M d_{1} \wedge M d_{2}\right)$
(common knowledge)
Truth condition:

Talking about knowledge (3)

Muddy children puzzle, after the first round (when none of the children stepped forward):
$M, w \Vdash K_{1}\left(M d_{1} \wedge M d_{2}\right) \wedge K_{2}\left(M d_{1} \wedge M d_{2}\right)$
$M, w \Vdash \mathrm{~K}_{1} \mathrm{~K}_{2}\left(M d_{1} \wedge M d_{2}\right) \wedge \mathrm{K}_{2} \mathrm{~K}_{1}\left(M d_{1} \wedge M d_{2}\right) \wedge$
$M, w \Vdash \mathrm{~K}_{1} \mathrm{~K}_{2} \mathrm{~K}_{1}\left(M d_{1} \wedge M d_{2}\right) \wedge \mathrm{K}_{2} \mathrm{~K}_{1} \mathrm{~K}_{2}\left(M d_{1} \wedge M d_{2}\right)$
$M, w \Vdash \mathrm{~K}_{1} \mathrm{~K}_{2} \mathrm{~K}_{1} \mathrm{~K}_{2}\left(M d_{1} \wedge M d_{2}\right) \wedge \ldots$
$M, w \Vdash \mathrm{CK}_{\{1,2\}}\left(M d_{1} \wedge M d_{2}\right)$
(common knowledge)
Truth condition:
■ $M, w \Vdash \mathrm{CK}_{\{1,2\}} A$ iff for all u, if $w\left(R_{1} \cup R_{2}\right)^{*} u$ then $M, u \Vdash A$

Talking about belief

"The Pope believes the earth is flat."

$M, w \Vdash$ Sphere $\wedge \operatorname{Bel}_{\text {Pope }} \neg$ Sphere

Talking about obligations

"It is forbidden to smoke in restaurants."

\{Smoke\}

M, w \Vdash Smoke $\wedge \mathrm{O} \neg$ Smoke $\wedge \neg \mathrm{P}$ Smoke

Talking about objects and their relations

The genealogy ontology:

- Propositional variables: Man, Woman,...
- Modal operators: FatherOf, MotherOf, BrotherOf, GrandfatherOf ,... ('roles')

$M, w \Vdash$ Woman $\wedge \exists$ SisterOf.Woman $\wedge \forall$ MotherOf.Man
M, w $\Vdash \exists$ MotherOf. \exists FatherOf.Man

Part 2: Talking about models

3 The modal language

4 Truth conditions

5 Reasoning in modal logics

6 The standard translation

Model checking

Given A, pointed model (M, w) : do we have $M, w \Vdash A$?

Validity in a Kripke model

■ A is valid in model M iff for all w in $M: M, w \Vdash A$
Given formula A, model M : is A valid in M ?

Example

Formula $\square P$ is valid in the model

$$
\underline{\emptyset} \xrightarrow{R}\{P\}
$$

The formulas $\neg P$ and $\square P \rightarrow P$ are not valid in M.

Validity in a class of Kripke models

- $\mathrm{K}=$ the class of all Kripke models
- A is valid in the class of models $\mathcal{C} \subseteq \mathrm{K}$ iff

$$
\text { for all models } M \text { in } \mathcal{C}: A \text { is valid in } M
$$

notation: $\models_{\mathcal{C}} A$
Given formula A, class of models \mathcal{C} : is A valid in \mathcal{C} ?

Examples

$\diamond P \leftrightarrow \neg \square \neg P$ is valid in K
$\square(P \vee \neg P)$ is valid in K
$\square P \wedge \square Q \rightarrow \square(P \wedge Q)$ is K-valid
$\square P \rightarrow P$ is K -invalid (being invalid in our example model)

Examples of validity in a class of models

■ Reflexive models (KT)
$\square P \rightarrow P$ valid
$\square A \rightarrow A$ valid, for any formula $A(A=$ schematic variable)

- Transitive models (K4)
$\diamond \diamond A \rightarrow \diamond A$ valid, for any formula A
■ Reflexive and transitive models: S4 valid: ...
- Symmetric relation (KB)
- Euclidean relation (K5)
- Equivalence relation (S5)
valid:

Examples of validity in a class of models

■ Reflexive models (KT)
$\square P \rightarrow P$ valid
$\square A \rightarrow A$ valid, for any formula $A(A=$ schematic variable)

- Transitive models (K4)
$\diamond \diamond A \rightarrow \diamond A$ valid, for any formula A
■ Reflexive and transitive models: S4 valid: . . .
- Symmetric relation (KB) valid: $A \rightarrow \square \diamond A$
- Euclidean relation (K5)
- Equivalence relation (S5)
valid:

Examples of validity in a class of models

■ Reflexive models (KT)
$\square P \rightarrow P$ valid
$\square A \rightarrow A$ valid, for any formula $A(A=$ schematic variable)

- Transitive models (K4)
$\diamond \diamond A \rightarrow \diamond A$ valid, for any formula A
- Reflexive and transitive models: S4 valid: . . .
- Symmetric relation (KB) valid: $A \rightarrow \square \diamond A$
- Euclidean relation (K5)
(alias... valid: $\diamond A \rightarrow \square \diamond A$
- Equivalence relation (S5) valid: ...

Examples of validity in a class of models (ctd.)

- Serial models: for every w there is w^{\prime} such that $w R w^{\prime}$ valid:
- Deterministic models: valid: . .
- Confluence: valid: $\diamond \square A \rightarrow \square \diamond A$
- Linearity:

Examples of validity in a class of models (ctd.)

- Serial models: for every w there is w^{\prime} such that $w R w^{\prime}$ valid:
- Deterministic models: valid: ...
- Confluence: valid: $\diamond \square A \rightarrow \square \diamond A$
- Linearity: valid: $\diamond A \wedge \diamond B \rightarrow(\diamond(A \wedge \diamond B)) \vee(\diamond(\diamond A \wedge B))$
- Singleton models: $\{M: \operatorname{card}(W)=1\}$ valid: . . .
- Inclusion of R_{1} in R_{2}
- Permutation: $R_{1} \circ R_{2} \subseteq R_{2} \circ R_{1}$ valid: $\diamond_{1} \diamond_{2} A \rightarrow \diamond_{2} \diamond_{1} A$

Examples of validity in a class of models (ctd.)

- Serial models: for every w there is w^{\prime} such that $w R w^{\prime}$ valid:
- Deterministic models: valid: ...
- Confluence: valid: $\diamond \square A \rightarrow \square \diamond A$
- Linearity: valid: $\diamond A \wedge \diamond B \rightarrow(\diamond(A \wedge \diamond B)) \vee(\diamond(\diamond A \wedge B))$
- Singleton models: $\{M: \operatorname{card}(W)=1\}$ valid: ...
- Inclusion of R_{1} in R_{2} valid: $\square{ }_{2} A \rightarrow \square_{1} A$
■ Permutation: $R_{1} \circ R_{2} \subseteq R_{2} \circ R_{1}$

Examples of validity in a class of models (ctd.)

- Serial models: for every w there is w^{\prime} such that $w R w^{\prime}$ valid:
- Deterministic models: valid: ...
- Confluence: valid: $\diamond \square A \rightarrow \square \diamond A$
- Linearity: valid: $\diamond A \wedge \diamond B \rightarrow(\diamond(A \wedge \diamond B)) \vee(\diamond(\diamond A \wedge B))$
- Singleton models: $\{M: \operatorname{card}(W)=1\}$ valid: . .
- Inclusion of R_{1} in R_{2} valid: $\square{ }_{2} A \rightarrow \square_{1} A$
- Permutation: $R_{1} \circ R_{2} \subseteq R_{2} \circ R_{1}$ valid: $\diamond_{1} \diamond_{2} A \rightarrow \diamond_{2} \diamond_{1} A$

Logical consequence in a class of models

■ B is a global logical consequence of A in class \mathcal{C} iff for all M in \mathcal{C} : if A is valid in M then if B is valid in M

- notation: $A \models_{\mathcal{C}} B$

Given formulas A, B, class of models \mathcal{C} : do we have $A \models_{\mathcal{C}} B$?

■ B is a local logical consequence of A in class \mathcal{C} iff for all M in \mathcal{C} and w in M : if $M, w \Vdash A$ then $M, w \Vdash B$
\square Difference: $\square A$ is a global logical consequence of A, but not a local consequence.

Proposition
B is a local logical consequence of A in \mathcal{C} iff $\models_{\mathcal{C}} A \rightarrow B$

Satisfiability in a class of models

■ A is satisfiable in \mathcal{C} iff for some M in \mathcal{C} and some w in M : $M, w \Vdash A$

Given formula A, class of models \mathcal{C} : is A satisfiable in \mathcal{C} ?

Examples
P is K-satisfiable
$P \wedge \neg \square P$ is K-satisfiable
$P \wedge \square \neg P$ is K-satisfiable
$P \wedge \square \neg P$ is unsatisfiable in the class of reflexive models KT
Proposition
A is \mathcal{C}-valid iff $\neg A$ is \mathcal{C}-unsatisfiable.

The main reasoning problems

1 Model checking
Given A, finite M, w in $M: \quad$ do we have $M, w \Vdash A$?
2 Satisfiability
Given $A, \mathcal{C}: \quad$ is there $M \in \mathcal{C}$ and w in M s.th. $M, w \Vdash A$?
3 Model building
Given A, \mathcal{C} :

- if A is unsatisfiable in \mathcal{C} then output "NO"
- if A is satisfiable in \mathcal{C} then
output some model M that is in \mathcal{C} and some w in M such that $M, w \Vdash A$

How can we solve them automatically?

Part 2: Talking about models

3 The modal language

4 Truth conditions

5 Reasoning in modal logics

6 The standard translation

The standard translation

Maps the language of modal logic to the language of FOL:

$$
\begin{aligned}
S T(P, w) & =P(w) \\
S T(\neg A, w) & =\neg S T(A, w) \\
S T(A \wedge B, w) & =S T(A, w) \wedge S T(B, w) \\
S T\left(\square_{l} A, w\right) & =\forall u\left(R_{l}(w, u) \rightarrow S T(A, u) \quad \text { where } u\right. \text { is new } \\
S T\left(\diamond_{I} A, w\right) & =\exists u\left(R_{l}(w, u) \wedge S T(A, u)\right) \quad \text { where } u \text { is new }
\end{aligned}
$$

Example
$S T\left(\diamond_{1} \diamond_{J} P\right)=\ldots$
Theorem
Suppose the class \mathcal{C} can be defined by a FOL formula $A_{\mathcal{C}}$.
Then A is \mathcal{C}-satisfiable iff $A_{\mathcal{C}} \wedge S T(A)$ is $F O L$-satisfiable.

The standard translation: examples

Examples

■ The class of reflexive models KT is defined by the first-order formula $A_{\mathrm{KT}}=\forall w R(w, w)$.

- The class of transitive models K4 is defined by

$$
A_{K 4}=\forall w_{1} \forall w_{2} \forall w_{3}\left(\left(R\left(w_{1}, w_{2}\right) \wedge R\left(w_{2}, w_{3}\right)\right) \rightarrow R\left(w_{1}, w_{3}\right)\right)
$$

■ The class of serial models is defined by ...

- The class of confluent models is defined by ...

Examples

- The class of finite models cannot be defined by a FOL formula.
- The class of models without infinite R-chains ('conversely well-founded') cannot be defined by a FOL formula.

The standard translation and the two-variable fragment of FOL

- $\mathrm{FO} 2=\mathrm{FOL}$ with constants, equality and only two variables
- satisfiability is decidable in nondeterministic exponential time (NEXPTIME)
- Standard translation with only two variables w_{1} and w_{1} :

$$
\begin{aligned}
& S T\left(\square_{l} A, w_{1}\right)=\forall w_{2}\left(R_{l}\left(w_{1}, w_{2}\right) \rightarrow S T\left(A, w_{2}\right)\right. \\
& S T\left(\square_{l} A, w_{2}\right)=\forall w_{1}\left(R_{l}\left(w_{2}, w_{1}\right) \rightarrow S T\left(A, w_{1}\right)\right.
\end{aligned}
$$

■ Problem: to define transitivity in FOL we need three variables and FO3 is not decidable

Outline of course

Part 1: Modelling with graphs
Part 2: Talking about models
Part 3: The model construction method: basics
Part 4: Logics with simple constraints on models
Part 5: Logics with potential cycles
Part 6: Model checking in LoTREC
Part 7: Logics with transitive closure

Part 3:

The model construction method: basics

7 Outline of the method
8 Building models in LoTREC

- Defining a language in LoTREC

■ Tableau rules

- Strategies
- Do the algorithms do the right thing?

9 The basic modal Logic and its implementation in LoTREC - Classical logic

- Modal logic K

■ Multi-modal logic K_{n}

Classical logic [Beth 55, Hintikka 55, Schütte 56; Smullyan 68]

Checking the satisfiability of a given formula A :
1 Try to find M and w by applying the truth conditions
$■ M, w \Vdash A_{1} \wedge A_{2} \Longrightarrow$ add $M, w \Vdash A_{1}$, and add $M, w \Vdash A_{2}$
■ $M, w \Vdash A_{1} \vee A_{2} \Longrightarrow$ either add $M, w \Vdash A_{1}$, or add $M, w \Vdash A_{2}$ (nondeterministic)

- $M, w \Vdash \neg A_{1} \Longrightarrow$ don't add $M, w \Vdash A_{1}$!!
$■ M, w \Vdash \neg \neg A_{1} \quad \Longrightarrow$ add $M, w \Vdash A_{1}$
- $M, w \Vdash \neg\left(A_{1} \vee A_{2}\right) \Longrightarrow$ add $M, w \Vdash \neg A_{1}$ and add $M, w \Vdash \neg A_{2}$
- $M, w \Vdash \neg\left(A_{1} \wedge A_{2}\right) \Longrightarrow$ add $M, w \Vdash \neg A_{1}$ or add $M, w \Vdash \neg A_{2}$
\Longrightarrow tableau rules
2 apply while possible (saturation)
3 is M a model?
- NO if both $M, w \|-B$ and $M, w \| \neg B$ (closed tableau)
- ELSE M is a model for A (open tableau)

Classical logic [Beth 55, Hintikka 55, Schütte 56; Smullyan 68]

Checking the satisfiability of a given formula A :
1 Try to find M and w by applying the truth conditions
$■ M, w \Vdash A_{1} \wedge A_{2} \Longrightarrow$ add $M, w \Vdash A_{1}$, and add $M, w \Vdash A_{2}$
■ $M, w \Vdash A_{1} \vee A_{2} \Longrightarrow$ either add $M, w \Vdash A_{1}$, or add $M, w \Vdash A_{2}$ (nondeterministic)

- $M, w \Vdash \neg A_{1} \Longrightarrow$ don't add $M, w \Vdash A_{1}$!!
$■ M, w \Vdash \neg \neg A_{1} \quad \Longrightarrow$ add $M, w \Vdash A_{1}$
■ $M, w \Vdash \neg\left(A_{1} \vee A_{2}\right) \Longrightarrow$ add $M, w \Vdash \neg A_{1}$ and add $M, w \Vdash \neg A_{2}$
- $M, w \Vdash \neg\left(A_{1} \wedge A_{2}\right) \Longrightarrow$ add $M, w \Vdash \neg A_{1}$ or add $M, w \Vdash \neg A_{2}$
\Longrightarrow tableau rules
2 apply while possible (saturation)
3 is M a model?
- NO if both $M, w \Vdash B$ and $M, w \Vdash \neg B$ (closed tableau)
- ELSE M is a model for A (open tableau)

$$
W=\{w\}, R=\emptyset, V(w)=\{P: M, w \Vdash P\}
$$

Modal logic [Fitting 83]

Basic cases

- $M, w \Vdash \diamond A$
\Longrightarrow add some new node u, add $w R u$, add $M, u \Vdash A$
$■ M, w \Vdash \square A$
\Longrightarrow for all node u s.th. $w R u$, add $M, u \Vdash A$

Apply truth conditions = build a labeled graph
■ create nodes

- add links
- add formulas to nodes

Example

a node with the input formula
[] P \& <> Q \& <> (R v~P)

Example

$M, w \Vdash A \wedge B$ iff $M, w \Vdash A$ and $M, w \Vdash B$

$$
\begin{array}{ll}
A & \text { is } \quad \square P \\
B & \text { is } \quad \diamond Q \wedge \diamond(R \vee \neg P)
\end{array}
$$

[] P \& <> Q \& <> (R v ~P)

Example

$M, w \Vdash A \wedge B$ iff $M, w \Vdash A$ and $M, w \Vdash B$

$$
\begin{array}{ll}
A & \text { is } \quad \square P \\
B & \text { is } \quad \diamond Q \wedge \diamond(R \vee \neg P)
\end{array}
$$

$$
\begin{gathered}
{[] P \&<>Q \&<>(R \vee \sim P)} \\
{[] P} \\
<>Q \&<>(R \vee \sim P)
\end{gathered}
$$

Example

$M, w \Vdash A \wedge B$ iff $M, w \Vdash A$ and $M, w \Vdash B$

$$
\begin{gathered}
{[] P \&<>Q \&<>(R \vee \sim P)} \\
{[] P} \\
<>Q \&<>(R \vee \sim P) \\
<>Q \\
<>
\end{gathered}
$$

Example

$M, w \Vdash \diamond A$ iff there is u s.th. $w R u$ and $M, u \Vdash A$

Example

$M, w \Vdash \square A$ iff for all u : if $w R u$ then $M, u \Vdash A$

Example

$M, w \Vdash A \vee B$ iff $M, w \Vdash A$ or $M, w \Vdash B$

Example

premodel 2

Example

A short history of the tableau method

Since 1950's: handwritten proofs
■ ... Sequent calculi [Gentzen]

- Tableaux calculi (tableau proof $=$ sequent proof backwards)
- Kripke: explicit accessibility relation
- Smullyan, Fitting: uniform notation
- Single-step tableaux [Massacci] $\sigma: \diamond A \Longrightarrow \sigma, n: A$
- Tableaux by graph rewriting [Castilho et al. 97, Gasquet et al. 06]

Nowadays: automated provers
■ fast: FaCT [Horrocks], LWB [Heuerding, Jäger et col.], K-SAT [Giunchiglia\&Sebastiani],...
■ generic: TWB [Abate\&Goré], LoTREC

Part 3:

The model construction method: basics

7 Outline of the method

8 Building models in LoTREC

- Defining a language in LoTREC
- Tableau rules
- Strategies

■ Do the algorithms do the right thing?
9 The basic modal Logic and its implementation in LoTREC

- Classical logic
- Modal logic K
- Multi-modal logic K_{n}

A short history of LoTREC

- before 2000: theoretical bases (Luis Fariñas del Cerro, Olivier Gasquet, Andreas Herzig)
- David Fauthoux [2000]
- rewriting kernel
- event-based implementation
- K, KT, KB

■ Mohamad Sahade [2002-2005]

- loopchecking
- more logics: S4, K4,...
- general completeness and termination proofs
- Bilal Said [2006-2010]
- LTL, PDL. .
- Confluence \& commutative patterns
- Model checking
- graph rewriting basis \& their theoretical properties
- GUI, full web accessibility, step-by-step run,...

The black box

Outline

7 Outline of the method

8 Building models in LoTREC
■ Defining a language in LoTREC

- Tableau rules
- Strategies
$■$ Do the algorithms do the right thing?

9 The basic modal Logic and its implementation in LoTREC
■ Classical logic

- Modal logic K
- Multi-modal logic K_{n}

User-defined language

- Atomic propositions

■ constant symbols $=$ Capital 1st letter words
■ Formulas

- prefix notation (but can be displayed in infix form)

■ priority and associativity to avoid printing parentheses

Example (definition)			
name	arity	display	
not	1	\sim_{-}	
and	2	$\&_{-}^{\&-}$	
\ldots			
nec	1	[]$_{-}$	
pos	1	$<>-$	

Example (usage)

- pos P
displayed: <>P
- and not Q not P displayed: $\sim \mathrm{Q} \& \sim \mathrm{P}$

Outline

7 Outline of the method

8 Building models in LoTREC

- Defining a language in LoTREC

■ Tableau rules

- Strategies
- Do the algorithms do the right thing?

9 The basic modal Logic and its implementation in LoTREC

- Classical logic
- Modal logic K
- Multi-modal logic K_{n}

On paper

Truth conditions

as Graph rewriting rules Structural constraints

$M, w \Vdash A \wedge B$ iff
$M, w \Vdash A$ and $M, w \Vdash B$

On paper

Truth conditions

as Graph rewriting rules
 Structural constraints

$M, w \Vdash \diamond A$ iff
$\exists u$ s.th. $w R u$ and
$M, u \Vdash A$

On paper

Truth conditions

as Graph rewriting rules
 Structural constraints

Model is reflexive

In LoTREC

Graph rewriting rule as "if Conditions ... then Actions"

Rule And
hasElement node and variable A variable B
add node variable A
add node variable B
End

In LoTREC

Graph rewriting rule as "if Conditions ... then Actions"

[^0]
In LoTREC

Graph rewriting rule as "if Conditions ... then Actions"

[^1]
Semantics of rules: the basic idea

Apply rule to a graph $G=$ apply to every formula in every node \Longrightarrow strategies get more declarative
\Longrightarrow proofs get easier
Tableau rules expand directed graphs by

- adding links
- adding nodes
- adding formulas
- duplicating the graph

$$
\begin{aligned}
\operatorname{rule}(G) & =\left\{G_{1}, \ldots, G_{n}\right\} \\
\operatorname{rule}\left(\left\{G_{1}, \ldots, G_{n}\right\}\right) & =\operatorname{rule}\left(G_{1}\right) \cup \ldots \cup \operatorname{rule}\left(G_{n}\right)
\end{aligned}
$$

Managing graph copies: depth-first

Managing graph copies: depth-first

Managing graph copies: depth-first

Managing graph copies: depth-first

Managing graph copies: depth-first

Outline

7 Outline of the method

8 Building models in LoTREC

- Defining a language in LoTREC
- Tableau rules

■ Strategies

- Do the algorithms do the right thing?

9 The basic modal Logic and its implementation in LoTREC
■ Classical logic

- Modal logic K

■ Multi-modal logic K_{n}

Why a strategy?

- Apply rules in order:

Strategy performOnce
Stop
And
Or

- Saturation:

Strategy CPL_strat	Strategy K_strat
$\frac{\text { repeat }}{\text { Stop }}$	$\frac{\text { CPL }}{}$
NotNot	Pos
And	Nec
Or	$\underline{\text { end }}$
end	

Semantics of strategies

1 block: rule1 ... rulen ... anotherStrategy ... apply all applicable rules in order then stop

Example
Strategy CPL
Stop
And
Or
Not_Not
...

Semantics of strategies

1 block: rule1 ... rulen ... anotherStrategy ... apply all applicable rules in order then stop

2 repeat block end repeat until no rule applicable (saturation)

Example
Strategy K

```
repeat
    CPL
    Pos
    Nec
end
```

For simple logics: repeat and blocks are sufficient!

Semantics of strategies

1 block: rule1 ... rulen ... anotherStrategy ... apply all applicable rules in order then stop

2 repeat block end repeat until no rule applicable (saturation)

3 firstRule block end
apply first applicable rule, then stop (unfair!)
cf. higher-order proof assistants

Example repeat
firstRule
rule1
rule2 x
rule1 is always applicable rule2 is applicable BUT never applied!
end
end

Semantics of strategies

1 block: rule1 ... rulen ... anotherStrategy ... apply all applicable rules in order then stop
2 repeat block end repeat until no rule applicable (saturation)
3 firstRule block end apply first applicable rule, then stop (unfair!)
cf. higher-order proof assistants
4 allRules block end exactly as a "block", but needed inside firstRule
Example firstRule
rule1
allRules
rule2
rule3
end
rule4
end

Semantics of strategies

1 block: rule1 ... rulen ... anotherStrategy ... apply all applicable rules in order then stop

2 repeat block end repeat until no rule applicable (saturation)

3 firstRule block end apply first applicable rule, then stop (unfair!)
cf. higher-order proof assistants
4 allRules block end exactly as a "block", but needed inside firstRule

5 applyOnce rule apply the rule on only one occurrence

Tableaux: definition

The set of tableaux for formula A with strategy S is: the set of graphs obtained by applying the strategy S to an initial single-node graph whose root contains only A.

■ Notation: $S(A)$
Remark
our tableau = "tableau branch" in the literature (sounds odd to call a graph a branch)

Open or Closed?

- A node is closed iff it contains "FALSE"

■ A tableau is closed iff it has a closed node
■ A set of tableaux is closed iff all its elements are closed

An open tableau is a premodel
\Longrightarrow build a model

Outline

7 Outline of the method

8 Building models in LoTREC

- Defining a language in LoTREC
- Tableau rules
- Strategies

■ Do the algorithms do the right thing?

9 The basic modal Logic and its implementation in LoTREC
■ Classical logic

- Modal logic K
- Multi-modal logic K_{n}

Formal properties

To be proved for each strategy S :

- Termination

For every $A, S(A)$ terminates.

- Soundness

If $S(A)$ is closed then A is unsatisfiable.

- Completeness

If $S(A)$ is open then A is satisfiable.

In general. . .

■ Soundness proofs: easy (we just apply truth conditions)
■ Termination proofs: not so easy (case-by-case)

- Completeness proofs...
- ... for fair strategies: standard techniques work "in most cases" but fair strategies do not terminate in general
- ... for terminating strategies: difficult rigorous proofs rare even for the basic modal logics! reason: strategy $=$ imperative programming

In general. . .

BUT soundness + termination is practically sufficient (e.g. when experimenting with a logic):

- given: class of models \mathcal{C}, strategy S, formula A
- apply strategy S to A
- take an open tableau and build pointed model (M, w)

■ check if M in desired class of models

- check if $M, w \Vdash A$

A general termination theorem

[O. Gasquet et al., AIML 2006]

- IF for every rule ρ :
the RHS of ρ contains strict subformulas of its LHS AND
some restriction on node creation
- THEN
for every formula A:
the tableau construction terminates

Another general termination theorem

[O. Gasquet et al., AIML 2006]

- IF for every rule ρ :
the RHS of ρ contains subformulas of its LHS AND
some restriction on node creation AND
some loop testing in the strategy
- THEN
for every formula A:
the tableau construction terminates

Part 3:

The model construction method: basics

7 Outline of the method

8 Building models in LoTREC

- Defining a language in LoTREC

■ Tableau rules

- Strategies
- Do the algorithms do the right thing?

9 The basic modal Logic and its implementation in LoTREC

- Classical logic
- Modal logic K

■ Multi-modal logic K_{n}

Outline

7 Outline of the method

8 Building models in LoTREC

- Defining a language in LoTREC
- Tableau rules
- Strategies
$■$ Do the algorithms do the right thing?

9 The basic modal Logic and its implementation in LoTREC

- Classical logic
- Modal logic K
- Multi-modal logic K_{n}

How to proceed

CPL: Classical Propositional Logic
1 From the menu bar, open:
\Longrightarrow Logic \Longrightarrow Predefined logics $\Longrightarrow C P L$
2 Run: Build Premodels button
3 Why these results?

- Predefined formula
- Predefined main strategy

4 Review the logic definition: Connectors, Rules...
5 Change the formula
6 Re-run...

Adding " \leftrightarrow "

What about formulas with " \leftrightarrow " operator?

1 Save as CPL locally as "CPL_complete.xml'
2 Add to Connectors:

name	arity	display	priority
equiv	2	$__{-}^{\langle-\rangle}$	0 (lowest)

3 Add to Rules:
Equiv, and NotEquiv
4 Call them in the strategy
5 Try some formulas...

Outline

7 Outline of the method

8 Building models in LoTREC

- Defining a language in LoTREC
- Tableau rules
- Strategies

■ Do the algorithms do the right thing?

9 The basic modal Logic and its implementation in LoTREC

- Classical logic
- Modal logic K
- Multi-modal logic Kn

From CPL to K

■ Here: minimal set of operators \neg, \wedge, \square only

- Rules of CPL
\square Rule for $\neg \square A$:
- for every $\neg \square A$ at every node w : create a successor u and add $\neg A$ to it
\square Rule for $\square A$:
■ for every $\square A$ at every w, and for every R-successor u of w : add A to u

■ Strategy: saturate with all the rules...

Rules

- Rule NotNec
hasElement w pos variable a
createNewNode u
link w u R
add u variable a
- Rule Nec
hasElement w nec variable a
isLinked w u R
add u variable a

Strategies

1 Continue with your "CPL_complete.xml', or
Open Predefined logic \Longrightarrow Others \Longrightarrow CPL_complete
2 Add the nec operator
3 Add the rules Nec and NotNec
4 Add a new strategy KStrategy which calls repeatedly CPLStrategy and then the rules Pos and Nec
5 Test with [] P \& $<>Q \&<>(R \vee \sim P)$
i.e. and nec P and pos Q pos or R not P

6 Test with other formulas...

Outline

7 Outline of the method

8 Building models in LoTREC

- Defining a language in LoTREC
- Tableau rules
- Strategies
- Do the algorithms do the right thing?

9 The basic modal Logic and its implementation in LoTREC

- Classical logic
- Modal logic K

■ Multi-modal logic K_{n}

From K To K n

- Replace the operator \square_{-}by [-]-
- Change all the predefined formulae

■ Change the modal rules: Nec and NotNec

```
Rule Nec_K
    hasElement w nec variable a
    isLinked w u R
    add u variable a
```


How to proceed

1 From the task pane, open:
Open Predefined logic \Longrightarrow Others \Longrightarrow Multimodal-K
2 Check $\neg[1] P \wedge \neg[2] \neg P, \ldots$

Description logic ALC

- Notational variant:

■ write R instead of I ('atomic role')

- write A instead of P ('atomic concept')

■ write C instead of A ('complex concept')
■ write \sqcap instead of \wedge

- write \sqcup instead of \vee
- write $\forall R$.C instead of $[I] A$
- write $\exists R$.C instead of $\langle I\rangle A$

■ In LoTREC: change operators and rules appropriately

- Test concept satisfiability:
$\exists R .\left(A \sqcap A^{\prime}\right) \sqcap \forall R . \neg A$
- Test concept inclusion:
$C_{1} \sqsubseteq C_{2}$ iff $C_{1} \sqcap \neg C_{2}$ unsatisfiable

Outline of course

Part 1: Modelling with graphs
Part 2: Talking about models
Part 3: The model construction method: basics
Part 4: Logics with simple constraints on models
Part 5: Logics with potential cycles
Part 6: Model checking in LoTREC
Part 7: Logics with transitive closure

Part 4:

Logics with simple constraints on models

10 KT

- KD

From K to KT

Accessibility relation R is reflexive
\square Aim: close all tableaux for $\square P \wedge \neg P \quad$ (negation of axiom T)
■ Idea ${ }_{1}$: integrate reflexivity into the truth condition
$\square M, w \Vdash \square A$ iff $M, w \Vdash A$, and $M, u \Vdash A$ for every u that is accessible from w via R

■ Idea 2 : explicitly add reflexive edges to the graphs

From K to KT , ctd.

1 Save Monomodal-K as Monomodal-KT
2 Ideal: add new rule
Rule NecT
hasElement w nec variable a
add w variable a
3 Idea 2 : add new rule
Rule Reflexive_edges_for_R
isNewNode w
link W W R
4 Call new rule in the strategy
5 Check $P \wedge \square \neg P, P \wedge \square \square \neg P, \ldots$

Outline

10 KT
■ KD

From K to KD

Accessibility relation R is serial

- Aim: close all tableaux for $\square P \wedge \square \neg P \quad$ (negation of axiom D)

■ Naive idea: just add edges
Rule makeSerial
isNewNode w
(match a node)
createNewNode u
link w u R
\Longrightarrow will loop

From K to KD , ctd.

Accessibility relation R is serial
■ Idea: add edges only when needed and not created elsewhere
Rule makeSerial
hasElement w nec variable a
hasNotElement w not nec variable b
createNewNode u
link w u R
■ Call rule makeSerial in the strategy
■ Check $\square P \wedge \square \neg P \ldots \Longrightarrow$ sound but suboptimal
■ avoid too many successor nodes: apply makeSerial only once
applyOnce makeSerial

From K to KD , ctd.

Accessibility relation R is serial
■ Idea: add edges only when needed and not created elsewhere Rule makeSerial
hasElement w nec variable a
hasNotElement w not nec variable b
createNewNode u
link w u R

- Call rule makeSerial in the strategy
$■$ Check $\square P \wedge \square \neg P \ldots \Longrightarrow$ sound but suboptimal
■ avoid too many successor nodes: apply makeSerial only once applyOnce makeSerial

Outline of course

Part 1: Modelling with graphs
Part 2: Talking about models
Part 3: The model construction method: basics
Part 4: Logics with simple constraints on models
Part 5: Logics with potential cycles
Part 6: Model checking in LoTREC
Part 7: Logics with transitive closure

Part 5: Logics with potential cycles

11 S4

12 Intuitionistic logic LJ

From KT to S4

- Accessibility relation R is reflexive and transitive $(\mathrm{S} 4=\mathrm{KT} 4)$

■ Aim: close all tableaux for $\square P \wedge \neg \square \square P$
(negation of axiom 4)

- Idea ${ }_{1}$: integrate reflexivity and transitivity into the truth condition
- $M, w \Vdash \square A$ iff $M, w \Vdash A$, and $M, u \Vdash \square A$ for every u that is accessible from w via R
- Idea 2 :...

From KT to S4, ctd.

1 Save Monomodal-KT as Monomodal-S4
2 Copy/Paste rule Nec, and rename it as Nec4
3 Idea ${ }_{1}$:
Rule Nec4
hasElement node nec R variable a
isLinked node node' R
add node' nec R variable a
4 Check $\neg(\square P \rightarrow \square \square P)$, i.e. $\square P \wedge \neg \square \square P$
5 Test $\square \neg \square P$

Taming S4

$■$ LoTREC loops on input formula $\square \neg \square P$!
■ Execute step-by-step ('Step By Step’ instead of 'Build Premodels' button)
■ Observe: if no clash wasn't found after 2 nodes, there is no chance to find it later
\Longrightarrow no need to create successors for nodes that are included in an ancestor!

- hypothesis: nodes have been locally saturated before checking for loops

Taming S4, ctd.

■ Add the rule loopTest (cf. predefined S4_Optimal)
Rule loopTest
isNewNode node' (required for local activation)
isAncestor node node'
contains node node'
mark node' CONTAINED
link node' node Loop
(optional, highlights the inclusion)

- Call rule loopTest in the strategy
- guarantee that nodes are saturated before loopchecking: call loopTest after the CPL rules and rule NecT
- Run again.

Taming S4, ctd.

■ Add the rule loopTest (cf. predefined S4_Optimal)
Rule loopTest
isNewNode node' (required for local activation)
isAncestor node node'
contains node node'
mark node' CONTAINED
link node' node Loop
(optional, highlights the inclusion)

- add condition to rule NotNec: hasElement node not nec A isNotMarked node CONTAINED
- Call rule loopTest in the strategy
- guarantee that nodes are saturated before loopchecking: call loopTest after the CPL rules and rule NecT

Taming S4, ctd.

■ Add the rule loopTest (cf. predefined S4_Optimal)
Rule loopTest
isNewNode node' (required for local activation)
isAncestor node node'
contains node node'
mark node' CONTAINED
link node' node Loop (optional, highlights the inclusion)

- add condition to rule NotNec: hasElement node not nec A
isNotMarked node CONTAINED
- Call rule loopTest in the strategy

■ guarantee that nodes are saturated before loopchecking: call loopTest after the CPL rules and rule NecT
■ Run again...

Part 5: Logics with potential cycles

11 S4

12 Intuitionistic logic LJ

From S4 to intuitionistic logic LJ

■ Accessibility relation R is reflexive, transitive, and persistent

- Truth conditions:
$M, w \Vdash A \rightarrow B$ iff $M, u \Vdash A$ or $M, u \Vdash B$ for all u s.th. $w R u$ $M, w \Vdash \neg A$ iff $M, u \Vdash A$ for all u s.th. $w R u$
- tableau method requires signed formulas

■ in LoTREC: define operators sTrue and sFalse

- Rules for conjunction:

Rule sTrueAnd
hasElement w sTrue and variable a variable b
add w sTrue variable a
add w sTrue variable b
Rule sFalseAnd
hasElement w sFalse and variable a variable b
duplicate copiedgraph
add w sFalse variable a

From S4 to intuitionistic logic LJ

■ Accessibility relation R is reflexive, transitive, and persistent

- Truth conditions:
$M, w \Vdash A \rightarrow B$ iff $M, u \Vdash A$ or $M, u \Vdash B$ for all u s.th. $w R u$ $M, w \Vdash \neg A$ iff $M, u \Vdash A$ for all u s.th. $w R u$
■ not valid: $\neg \neg A \leftrightarrow A ; \neg(A \wedge B) \leftrightarrow \neg A \vee \neg B ; \ldots$
■ tableau method requires signed formulas
■ in LoTREC: define operators sTrue and sFalse

Rule sTrueAnd
hasElement w sTrue and variable a variable b
add w sTrue variable a
add w sTrue variable b
Rule sFalseAnd
hasElement w sFalse and variable a variable b
duplicate copiedgraph
add w sFalse variable a

From S4 to intuitionistic logic LJ

■ Accessibility relation R is reflexive, transitive, and persistent

- Truth conditions:
$M, w \Vdash A \rightarrow B$ iff $M, u \Vdash A$ or $M, u \Vdash B$ for all u s.th. $w R u$
$M, w \Vdash \neg A$ iff $M, u \Vdash A$ for all u s.th. $w R u$
■ not valid: $\neg \neg A \leftrightarrow A ; \neg(A \wedge B) \leftrightarrow \neg A \vee \neg B ; \ldots$
■ tableau method requires signed formulas
■ in LoTREC: define operators sTrue and sFalse
- Rules for conjunction:

Rule sTrueAnd
hasElement w sTrue and variable a variable b
add w sTrue variable a
add w sTrue variable b
Rule sFalseAnd
hasElement w sFalse and variable a variable b
duplicate copiedgraph
add w sFalse variable a
add copiedgraph.w sFalse variable b

From S4 to intuitionistic logic LJ, ctd.

- Rules for implication:

```
Rule sFalseImp
    hasElement w sFalse imp variable a variable b
    isNotMarked w CONTAINED
    createNewNode u
    link w u R
    add u sTrue variable a
    add u sFalse variable b
Rule sTrueImpActual
    hasElement w sTrue imp variable a variable b
    add w sFalse variable a
    add copiedgraph.w sTrue variable b
    duplicate copiedgraph
Rule sTrueImpPropagation
    hasElement w sTrue imp variable a variable b
    isLinked w u R
```


From S4 to intuitionistic logic LJ, ctd.

- Rule for true atoms (implements persistent R):

Rule sTrueAtom
hasElement w sTrue variable a
isAtomic variable a
isLinked w u R
add u sTrue variable a

- Test:
$((P \rightarrow Q) \rightarrow P) \rightarrow P$
(Pierce's formula)
- Test:
$\neg \neg P \rightarrow P$
$P \rightarrow \neg \neg P$
$P \vee \neg P$
- improve: use three signs. . .

Outline of course

Part 1: Modelling with graphs
Part 2: Talking about models
Part 3: The model construction method: basics
Part 4: Logics with simple constraints on models
Part 5: Logics with potential cycles
Part 6: Model checking in LoTREC
Part 7: Logics with transitive closure

Part 6: Model checking in LoTREC

13 Model checking in LoTREC

Model checking

Given M_{0}, w_{0}, and $A_{0} \ldots$ do we have $M_{0}, w_{0} \Vdash A_{0}$?

1. build model M_{0} with root w_{0} in LoTREC

$$
\begin{aligned}
& \text { createNewNode w0, } \\
& \text { createNewNode u, } \\
& \text { link w0 u R, } \\
& \text { add u P, } \\
& \text { add u Q, }
\end{aligned}
$$

2. add formula A_{0} to be checked to root note w_{0}

$$
\text { add w0 isItTrue nec not } P \quad \text { (add as dummy operator) }
$$

3. top-down: decomposition of A_{0}
```
hasElement w isItTrue not variable A
```

 add w isItTrue variable A
 hasElement \(w\) isItTrue nec variable A
 isLinked w u R
 add u isItTrue variable A

Model checking, ctd.

4. bottom-up: build truth value of A_{0}
```
hasElement w isItTrue variable A
isAtomic variable A
hasElement w variable A
markExpression w isItTrue variable A Yes
```

hasElement w isItTrue nec variable A
isLinked w u R
isMarkedExpression u isItTrue variable A No
markExpression w isItTrue nec variable A No
hasElement w isItTrue nec variable A
isLinked w u R
isMarkedExpressionInAllChildren w isItTrue variable A R Yes
markExpression w isItTrue nec variable A Yes

Outline of course

Part 1: Modelling with graphs
Part 2: Talking about models
Part 3: The model construction method: basics
Part 4: Logics with simple constraints on models
Part 5: Logics with potential cycles
Part 6: Model checking in LoTREC
Part 7: Logics with transitive closure

Outline

■ PDL

- Suggestions

Propositional Dynamic Logic PDL

■ Language: complex programs Π, complex formulas A

$$
\begin{gathered}
\Pi::=I|A ?| \Pi ; \Pi|\Pi \cup \Pi| \Pi^{*} \\
A::=P|\neg A| A \wedge A|A \vee A|\langle\Pi\rangle A \mid[\Pi] A
\end{gathered}
$$

where P ranges over \mathcal{P} and / ranges over \mathcal{I}

- Interpretation of complex programs and formulas: defined by mutual recursion
- $R_{A ?}=\{\langle w, w\rangle: M, w \Vdash A\}$
- $R_{\Pi_{1} ; \Pi_{2}}=R_{\Pi_{1}} \circ R_{\Pi_{2}}$
- $R_{\Pi_{1} \cup \Pi_{2}}=R_{\Pi_{1}} \cup R_{\Pi_{2}}$
- $R_{\Pi^{*}}=\left(R_{\Pi}\right)^{*}$

■ $M, w \Vdash\langle\Pi\rangle A$ iff there is w^{\prime} such that $w R_{\Pi} w^{\prime}$ and $M, w^{\prime} \Vdash A$

PDL: taming the Kleene star

■ Problem: how to handle transitive closure?

- Solution: postpone
- $M, w \Vdash\left[\Pi^{*}\right] A$ iff $M, w \Vdash A \wedge[\Pi]\left[\Pi^{*}\right] A$
- in LoTREC:

Rule Nec_Star hasElement w nec star variable Pi variable A add w variable A add w nec variable Pi nec star variable Pi variable A

Rule Pos_Star hasElement w pos star variable Pi variable A add w or variable A pos variable Pi pos ...

PDL: taming the Kleene star

- Problem: how to handle transitive closure?
- Solution: postpone
- $M, w \Vdash\left[\Pi^{*}\right] A$ iff $M, w \Vdash A \wedge[\Pi]\left[\Pi^{*}\right] A$
- in LoTREC:

Rule Nec_Star hasElement w nec star variable Pi variable A add w variable A add w nec variable Pi nec star variable Pi variable A

Rule Pos_Star
hasElement w pos star variable Pi variable A add w or variable A pos variable Pi pos ...
■ termination: use looptesting

- Observe: these rules don't add subformulas
- ... but 'almost' subformulas (Fischer-Ladner closure)

PDL: taming the Kleene star, ctd.

- A problem:

■ execute $\left\langle I^{*}\right\rangle P$ step-by-step
■ always choose the graph where the fulfillment of $\left\langle I^{*}\right\rangle P$ is postponed
■ observe: terminates by looptest, but $\left\langle I^{*}\right\rangle P$ not fulfilled \Longrightarrow premodel cannot be transformed into a model of $\left\langle I^{*}\right\rangle P$

- Solution: check whether are all eventualities are fulfilled \Longrightarrow use model checking, v.s.

Outline

- Suggestions

It is up to you...

- S5; K + Universal operator

■ Confluence

- LTL

Thank you!

[^0]: Rule Pos
 hasElement node1 pos variable A
 createNewNode node2
 link node1 node2 R
 add node2 variable A
 End

[^1]: Rule ReflexiveEdges
 isNewNode node
 link node node R
 End

