
Institute of Parallel and Distributed Systems -

Distributed Systems Group

Jonathan Falk, Frank Dürr, Kurt Rothermel

Modeling Time-
Triggered Service 
Intermittence In 
Network Calculus

RTNS 2019



The age of the cyber-physical machine.

• “Smart” {city, factory, home}

• Autonomous Driving

• IEEE Time-sensitive Networking (TSN) Workgroup

• Increasingly complex network setups and network behavior

• Often non-trivial analysis

More distributed systems interfacing with the physical world
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Formal frameworks



(Deterministic) network calculus to compute bounds in queuing systems

𝛽
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(Deterministic) network calculus to compute bounds in queuing systems

𝛽

server = TX process
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Time-triggered service intermittence?

𝛽

?
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Contributions

• Modeling 2 classes of systems with time-triggered service intermittence

• Time-variant

• Time-invariant

• Implications?

• Highly generic model

• Complex schedules for service intermittence

• Beyond constant-rate service
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Systems with intermittent service

Server
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Systems with intermittent service

Server
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Server

Time-triggered blocking

Motivating example:

Time-aware shaping

Server 𝛽𝑆

block/pass
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Server

Time-triggered blocking

Motivating example:

Time-aware shaping

Server 𝛽𝑆

block/pass

always on 

TX process
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Time-triggered blocking

Motivating example:

Time-aware shaping
Time-aware shaper
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Time-triggered blocking

Motivating example:

Time-aware shaping
Time-aware shaper

Time State

𝑡1

𝑡2

𝑡3

…
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Time-triggered blocking

Data transmission and network elements are not synchronized.
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Time-triggered blocking

Data transmission and network elements are not synchronized.
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Latency bounds?



Server

Time-triggered halt and restart

Energy-efficiency

Server 𝛽𝑆

on/off
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Server

Time-triggered halt and restart

Energy-efficiency

Server 𝛽𝑆

on/off

TX process

stops and

restarts
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Time-triggered halt and restart

Energy-efficiency
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Time-triggered halt and restart

Energy-efficiency
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Time-triggered halt and restart

Energy-efficiency
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Time State

𝑡1 On

𝑡2 Off

𝑡3 On

𝑡4 Off



Time-triggered halt and restart

Energy-efficiency
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Time-triggered halt and restart

Energy-efficiency
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Time-triggered halt and restart

Energy-efficiency
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Time State

𝑡1 On

𝑡2 Off

𝑡3 On

𝑡4 Off

Backlog Bounds?
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Network calculus

• “System theory” for queuing systems

• Modularity (cf. convolution operation)

• Deterministic (guaranteed) bounds

• NC allows to compute deterministic bounds:

• (virtual) delay bound

• backlog bounds

• departure bound

ServerQueue
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Network calculus

Operating on cumulative curves.

ServerQueue

time

data

arrivals departures

one possible realization

of arrivals

one possible realization

of departures
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Network calculus

Consider the worst-case (deterministic network calculus).

ServerQueue

time

data

arrivals departures
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Network calculus

Arrival curve (models data entering the system).

time

data

arrival curve constrains arrivals:

∀ 𝑠 ≤ 𝑡 ∶ 𝐴 𝑡 − 𝐴 𝑠 ≤ ቊ
𝛼(𝑡 − 𝑠)
𝛼(𝑠, 𝑡)

arrival curve
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Network calculus

Service curve (models operation of the server).

time

data

Service curve β:

∀ 𝑡 ≥ 0 ∃ 𝑠 ≤ 𝑡 ∶ 𝑅 𝑡 ≥ 𝐴 𝑠 + ቊ
𝛽(𝑡 − 𝑠)
𝛽(𝑠, 𝑡)

service curve

departures

arrivals
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How to model services curves?

𝛽
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𝛽𝑆

on/off

𝛽
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How to model services curves?

𝛽
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How to model services curves?

𝛽
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𝛽

𝛽𝑆

on/off

𝛽

𝛽𝑆

block/pass

𝛽 = ?

𝛽𝑆 = TX𝛽𝑆 = TX

𝛽 = ?



Time-variant service curve

Observation: “enabled” intervals and “disabled” intervals

cycle

enabled:

Time-triggered blocking: data is being passed through 

Time-triggered halt and restart: server is on

disabled
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Time-variant service curve

Service in interval (s,t]?

s t

contribute to the total amount of 

service offered in (s,t]
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Time-variant service curve

Service in interval (s,t]?

s t

contribute to the total amount of 

service offered in (s,t]
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Service offered in interval 

depends on “position” in the 

schedule

→time-variant



Service curve formulation: idea

Service in interval (s,t]?

s t

different cases for enabled intervals:

• entirely included / excluded

• partially covered
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Time-variant service curve

Time-triggered blocking

Server

𝛽𝑆

block/pass

𝛽 𝑠, 𝑡 = ෍

𝑛=0

∞

𝛽𝑆(min(𝑡, 𝑡𝑑,𝑛)) − 𝛽𝑆(max(𝑠, 𝑡𝑒,𝑛))
+
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Time-variant service curve

Time-triggered blocking

Server

𝛽𝑆

block/pass

𝛽 𝑠, 𝑡 = ෍

𝑛=0

∞

𝛽𝑆(min(𝑡, 𝑡𝑑,𝑛)) − 𝛽𝑆(max(𝑠, 𝑡𝑒,𝑛))
+

„cut out“
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Time-variant service curve

Time-triggered halt and restart

Server

𝛽𝑆

on/off

𝛽 𝑠, 𝑡 = ෍

𝑛=0

∞

𝛽𝑆(min 𝑡, 𝑡𝑑,𝑛 −max(𝑠, 𝑡𝑒,𝑛))
+
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Time-variant service curve

Time-triggered halt and restart

Server

𝛽𝑆

on/off

𝛽 𝑠, 𝑡 = ෍

𝑛=0

∞

𝛽𝑆(min 𝑡, 𝑡𝑑,𝑛 −max(𝑠, 𝑡𝑒,𝑛))
+

„shift“
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Time-invariant service curve

• Derived from time-variant service curve

• DNC for time-invariant functions

• “less complicated”

• computational support available (to some degree)
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Time-invariant service curve

Leftover service curve: “virtual arrivals”

𝛽𝑆
Strict 

Priority

Low Priority

High Priority

real

𝛼𝑣
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Time-invariant service curve

Leftover service curve: subtract virtual arrivals: 𝛽 𝑡 = sup
𝑠≤𝑡

(𝛽𝑆 𝑠 − 𝛼𝑣(𝑠))
+

𝛽𝑆
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Time-invariant service curve

Leftover service curve: subtract virtual arrivals: 𝛽 𝑡 = sup
𝑠≤𝑡

(𝛽𝑆 𝑠 − 𝛼𝑣(𝑠))
+

𝛽𝑆
„amount of artificial arrivals“
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Time-invariant service curve

Leftover service curve: subtract virtual arrivals: 𝛽 𝑡 = sup
𝑠≤𝑡

(𝛽𝑆 𝑠 − 𝛼𝑣(𝑠))
+

𝛽𝑆
„amount of artificial arrivals“

𝑎𝑖𝑚𝑑,0
𝑣
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Time-invariant service curve

Leftover service curve: subtract virtual arrivals: 𝛽 𝑡 = sup
𝑠≤𝑡

(𝛽𝑆 𝑠 − 𝛼𝑣(𝑠))
+

𝛽𝑆
„amount of artificial arrivals“

𝑎𝑖𝑚𝑑,0
𝑣
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𝑎𝑖𝑚𝑑,1
𝑣



Time-invariant service curve

Direct service curve: find the worst case: 𝛽 𝑡 = inf
0<𝑠

𝛽(𝑠, 𝑠 + 𝑡)
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Time-invariant service curve

Direct service curve: find the worst case: 𝛽 𝑡 = inf
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Time-invariant service curve
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Time-invariant service curve

Direct service curve: find the worst case: 𝛽 𝑡 = inf
0<𝑠

𝛽(𝑠, 𝑠 + 𝑡)
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Evaluation

• Randomly generated schedules

• Numerical evaluation of “worst-case” overestimation

• Arrival curve independent metric

• Δ𝑣 = backlog(𝛽𝑎 , 𝛽𝑏)

• Δℎ = virtual delay(𝛽𝑎 , 𝛽𝑏)
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How much pessimism?

time-variant
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How much pessimism?

time-variant

time-invariant



Evaluation

• Proof-of-concept numeric Python implementation

• 𝛽𝑆 = 𝑡

• Comparison of time-variant vs. time-invariant for:

• blocking: t.v. vs. t.i. leftover*

• halt-restart: t.v. vs. t.i. direct

• Extend t.i.  curves with 𝛽 𝑠, 𝑡 = 𝛽𝑡.𝑖. 𝑡 − 𝑠
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Evaluation results

Random interval length [1,100] time units; 20 schedules per number of enabled intervals
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Varying ratio of enabled/disabled intervals 

per cycle:

• 10 enabled intervals per cycle

• cycle length: 400 time units

Time-invariant service curve is potentially 

more pessimistic for long disabled intervals 

with short interspersed enabled intervals.

Evaluation results
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Equal mean interval length, different 

interval length variance:

• 20 enabled intervals per cycle

• Binomial distribution 𝐵𝐻𝑉:

• Mean interval length: 100

• Variance: 90

• Binomial distribution 𝐵𝐿𝑉:

• Mean interval length: 100

• Variance: 20

Evaluation results
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Discussion

• Usually 𝛽𝑆 is quite constant

• Time-invariant service curves can be evaluated more easily

• In converged networks, it is not unlikely to have long enabled intervals with short disabled 

intervals (from the perspective of the traffic to be analyzed)

Practical systems have some favorable properties.
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Concluding remarks

• Closer look at the fundamental properties of systems with intermittent service

• Similar but Distinct: Blocking vs. Halt-Restart

• Open problems

• computational support for NC with complicated functions 

• Schedule for service intermittence results in complicated service curves

• Computational algorithms for time-variant network calculus

• Multiplexing (i.e., multiple streams sharing one queue)
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La fin.


