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Motivation Interactive Learning Problems

Why: Important Problems

I Autonomous robotics
I Financial applications
I Energy management
I Recommender systems
I Social applications
I And many more...

A. LAZARIC – Introduction to Reinforcement Learning Sept 14th, 2015 - 11/124



Motivation A Model for Sequential Decision Making

Outline

Motivation
Interactive Learning Problems
A Model for Sequential Decision Making
Outline

Multi-armed Bandit Problems

Extensions

A. LAZARIC – Introduction to Reinforcement Learning Sept 14th, 2015 - 12/124



Motivation A Model for Sequential Decision Making

What

A. LAZARIC – Introduction to Reinforcement Learning Sept 14th, 2015 - 13/124



Motivation A Model for Sequential Decision Making

What: Sequential Decision-Making under Uncertainty

Environment

Agent

actuation
action / state /

perception

A. LAZARIC – Introduction to Reinforcement Learning Sept 14th, 2015 - 14/124



Motivation A Model for Sequential Decision Making

What: Sequential Decision-Making under Uncertainty

Environment

Agent
Learning

Critic

perceptionactuation
action /

reward
state /

A. LAZARIC – Introduction to Reinforcement Learning Sept 14th, 2015 - 14/124



Motivation A Model for Sequential Decision Making

What: A Different Machine Learning Paradigm

I Supervised learning: an expert (supervisor) provides examples
of the right strategy (e.g., classification of clinical images).
Supervision is expensive.

I Unsupervised learning: different objects are clustered together
by similarity (e.g., clustering of images on the basis of their
similarity). No actual performance is optimized.

I Reinforcement learning: learning by direct interaction (e.g.,
autonomous robotics). Minimum level of supervision (reward)
and maximization of long term performance.
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Motivation Outline

How: the Course

I How to model an RL problem

I Models without states = MAB

I How to solve exactly an (small) MDP

I Hands-on session! (2h)

I How to solve approximately a (larger) MDP

I How to solve incrementally an MDP

I How to efficiently explore an MDP
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How to model an RL problem

The Markov Decision Process

The Model

Value Functions
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Motivation Outline

The Agent-Environment Interaction Model

The environment
I Controllability : fully (e.g., chess) or partially (e.g., portfolio optimization)
I Uncertainty : deterministic (e.g., chess) or stochastic (e.g., backgammon)
I Reactive: adversarial (e.g., chess) or fixed (e.g., tetris)
I Observability : full (e.g., chess) or partial (e.g., robotics)
I Availability : known (e.g., chess) or unknown (e.g., robotics)

The critic
I Sparse (e.g., win or loose) vs informative (e.g., closer or further)
I Preference reward
I Frequent or sporadic
I Known or unknown

The agent
I Open loop control
I Close loop control (i.e., adaptive)
I Non-stationary close loop control (i.e., learning)
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Motivation Outline

Markov Decision Process

Definition (Markov decision process [1, 4, 3, 5, 2])
A Markov decision process is defined as a tuple M = (X ,A, p, r):

I X is the state space,
I A is the action space,
I p(y |x , a) is the transition probability with

p(y |x , a) = P(xt+1 = y |xt = x , at = a),

I r(x , a, y) is the reward of transition (x , a, y).
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Motivation Outline

Markov Decision Process: the Assumptions

Time assumption: time is discrete

t → t + 1

Possible relaxations
I Identify the proper time granularity
I Most of MDP literature extends to continuous time
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Motivation Outline

Markov Decision Process: the Assumptions

Markov assumption: the current state x and action a are a
sufficient statistics for the next state y

p(y |x , a) = P(xt+1 = y |xt = x , at = a)

Possible relaxations
I Define a new state ht = (xt , xt−1, xt−2, . . .)

I Move to partially observable MDP (PO-MDP)
I Move to predictive state representation (PSR) model
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Motivation Outline

Markov Decision Process: the Assumptions

Reward assumption: the reward is uniquely defined by a transition
(or part of it)

r(x , a, y)

Possible relaxations
I Distinguish between global goal and reward function
I Move to inverse reinforcement learning (IRL) to induce the

reward function from desired behaviors
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Motivation Outline

Markov Decision Process: the Assumptions

Stationarity assumption: the dynamics and reward do not change
over time

p(y |x , a) = P(xt+1 = y |xt = x , at = a) r(x , a, y)

Possible relaxations
I Identify and remove the non-stationary components (e.g.,

cyclo-stationary dynamics)
I Identify the time-scale of the changes
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Motivation Outline

Question

Is the MDP formalism powerful enough?

⇒ Let’s try!
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Motivation Outline

Example: the Retail Store Management Problem

Description. At each month t, a store contains xt items of a specific
goods and the demand for that goods is Dt . At the end of each month
the manager of the store can order at more items from his supplier.
Furthermore we know that

I The cost of maintaining an inventory of x is h(x).
I The cost to order a items is C(a).
I The income for selling q items is f (q).
I If the demand D is bigger than the available inventory x , customers

that cannot be served leave.
I The value of the remaining inventory at the end of the year is g(x).
I Constraint: the store has a maximum capacity M.
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Motivation Outline

Example: the Retail Store Management Problem

I State space: x ∈ X = {0, 1, . . . ,M}.

I Action space: it is not possible to order more items that the
capacity of the store, then the action space should depend on the
current state. Formally, at state x , a ∈ A(x) = {0, 1, . . . ,M − x}.

I Dynamics: xt+1 = [xt + at − Dt ]
+.

Problem: the dynamics should be Markov and stationary!
I The demand Dt is stochastic and time-independent. Formally,

Dt
i.i.d.∼ D.

I Reward : rt = −C(at)− h(xt + at) + f ([xt + at − xt+1]
+).
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Motivation Outline

Policy

Definition (Policy)
A decision rule πt can be

I Deterministic: πt : X → A,
I Stochastic: πt : X → ∆(A),

A policy (strategy, plan) can be
I Non-stationary: π = (π0, π1, π2, . . . ),
I Stationary (Markovian): π = (π, π, π, . . . ).

Remark: MDP M + stationary policy π ⇒ Markov chain of state
X and transition probability p(y |x) = p(y |x , π(x)).
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Motivation Outline

Example: the Retail Store Management Problem

I Stationary policy 1

π(x) =
{

M − x if x < M/4
0 otherwise

I Stationary policy 2

π(x) = max{(M − x)/2 − x ; 0}

I Non-stationary policy

πt(x) =
{

M − x if t < 6
⌊(M − x)/5⌋ otherwise
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Multi-armed Bandit Problems

Outline

Motivation

Multi-armed Bandit Problems
Introduction
The Bandit Model
Bandit Algorithms: UCB
A (distribution-dependent) Lower Bound for the Regret
Worst-case Performance

Extensions
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Multi-armed Bandit Problems Introduction

How to efficiently explore an MDP

The Exploration-Exploitation
Dilemma

Multi-Armed Bandit

Contextual Linear Bandit

Reinforcement Learning
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Multi-armed Bandit Problems Introduction

The Navigation Problem
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Multi-armed Bandit Problems Introduction

The Navigation Problem

Question: which route should we take?

Problem: each day we obtain a limited feedback: traveling time
of the chosen route

Results: if we do not repeatedly try different options we cannot
learn.

Solution: trade off between optimization and learning .
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Multi-armed Bandit Problems Introduction

Learning the Optimal Policy

For i = 1, . . . , n
1. Set t = 0
2. Set initial state x0

3. While (xt not terminal)

3.1 Take action at according to a suitable exploration policy
3.2 Observe next state xt+1 and reward rt
3.3 Compute the temporal difference δt (e.g., Q-learning)
3.4 Update the Q-function

Q̂(xt , at) = Q̂(xt , at) + α(xt , at)δt

3.5 Set t = t + 1
EndWhile

EndFor

A. LAZARIC – Introduction to Reinforcement Learning Sept 14th, 2015 - 37/124



Multi-armed Bandit Problems Introduction

Learning the Optimal Policy

For i = 1, . . . , n
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3. While (xt not terminal)

3.1 Take action at = arg maxa Q(xt , a)
3.2 Observe next state xt+1 and reward rt
3.3 Compute the temporal difference δt (e.g., Q-learning)
3.4 Update the Q-function
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EndFor

⇒ no convergence
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Multi-armed Bandit Problems Introduction

Learning the Optimal Policy

For i = 1, . . . , n
1. Set t = 0
2. Set initial state x0

3. While (xt not terminal)

3.1 Take action at ∼ U(A)
3.2 Observe next state xt+1 and reward rt
3.3 Compute the temporal difference δt (e.g., Q-learning)
3.4 Update the Q-function

Q̂(xt , at) = Q̂(xt , at) + α(xt , at)δt

3.5 Set t = t + 1
EndWhile

EndFor

⇒ very poor rewards
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Multi-armed Bandit Problems The Bandit Model

Outline

Motivation

Multi-armed Bandit Problems
Introduction
The Bandit Model
Bandit Algorithms: UCB
A (distribution-dependent) Lower Bound for the Regret
Worst-case Performance

Extensions
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Multi-armed Bandit Problems The Bandit Model

How to efficiently explore an MDP

The Exploration-Exploitation
Dilemma

Multi-Armed Bandit

Contextual Linear Bandit

Reinforcement Learning
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Multi-armed Bandit Problems The Bandit Model

Reducing RL down to Multi-Armed Bandit

Definition (Markov decision process [1, 4, 3, 5, 2])
A Markov decision process is defined as a tuple M = (X ,A, p, r):

I X is the state space,
I A is the action space,
I p(y |x , a) is the transition probability
I r(x , a, y) is the reward of transition (x , a, y)

⇒ r(a) is the reward of action a
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Multi-armed Bandit Problems The Bandit Model

Notice

For coherence with the bandit literature we use the notation
I i = 1, . . . ,K set of possible actions
I t = 1, . . . , n time
I It action selected at time t
I Xi ,t reward for action i at time t
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Multi-armed Bandit Problems The Bandit Model

Learning the Optimal Policy

Objective: learn the optimal policy π∗ as efficiently as possible

For t = 1, . . . , n
1. Set t = 0
2. Set initial state x0
3. While (xt not terminal)

3.1 Take action at
3.2 Observe next state xt+1 and reward rt
3.3 Set t = t + 1

EndWhile
EndFor
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The Multi–armed Bandit Protocol

The learner has i = 1, . . . ,K arms (actions)

At each round t = 1, . . . , n

I At the same time
I The environment chooses a vector of rewards {Xi,t}K

i=1
I The learner chooses an arm It

I The learner receives a reward XIt ,t
I The environment does not reveal the rewards of the other

arms
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Multi-armed Bandit Problems The Bandit Model

Paradigmatic Example

Imagine you are a doctor:
I patients visit you one after another for a given disease
I you prescribe one of the (say) 5 treatments available
I the treatments are not equally efficient
I you do not know which one is the best, you observe the effect

of the prescribed treatment on each patient
⇒ What do you do?
I You must choose each prescription using only the previous

observations
I Your goal is not to estimate each treatment’s efficiency

precisely, but to heal as many patients as possible
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The (stochastic) Multi-Armed Bandit Model
Environment K arms with parameters θ = (θ1, . . . , θK ) such that

for any possible choice of arm It ∈ {1, . . . ,K} at
time t, one receives the reward

Xt = XIt ,t

where, for any 1 ≤ i ≤ K and s ≥ 1, Xi ,s ∼ νi , and
the (Xi ,s)i ,s are independent.

Reward distributions νi ∈ Fi parametric family, or not. Examples:
canonical exponential family, general bounded
rewards

Example Bernoulli rewards: θ ∈ [0, 1]K , νi = B(θi)

Strategy The agent’s actions follow a dynamical strategy
π = (π1, π2, . . . ) such that

It = πt(X1, . . . ,Xt−1)
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Multi-armed Bandit Problems The Bandit Model

The Multi–armed Bandit Game (cont’d)
Goal: Choose π so as to maximize

EA [Sn] =
n∑

t=1

K∑
i=1

E
[
E [XtI{It = i}|X1, . . . ,Xt−1]

]
=

K∑
i=1

µiE [Ti ,n]

where Ti ,n =
∑

t≤n I{It = i} is the number of draws of arm i up to
time n, and µi = E (νi).

=⇒ Equivalent to minimizing the regret

Rn(A) = max
i=1,...,K

E
[ n∑

t=1
Xi ,t
]
− E

[ n∑
t=1

XIt ,t

]
where µ∗ ∈ max{µi : 1 ≤ i ≤ K}.
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Multi-armed Bandit Problems The Bandit Model

The Exploration–Exploitation Lemma

Problem 1: The environment does not reveal the rewards of the arms
not pulled by the learner

⇒ the learner should gain information by repeatedly pulling all the arms
⇒ exploration

Problem 2: Whenever the learner pulls a bad arm, it suffers some regret
⇒ the learner should reduce the regret by repeatedly pulling the best arm
⇒ exploitation
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The Exploration–Exploitation Lemma

Problem 1: The environment does not reveal the rewards of the arms
not pulled by the learner
⇒ the learner should gain information by repeatedly pulling all the arms

⇒ exploration

Problem 2: Whenever the learner pulls a bad arm, it suffers some regret
⇒ the learner should reduce the regret by repeatedly pulling the best arm

⇒ exploitation

Challenge: The learner should solve two opposite problems!
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The Exploration–Exploitation Lemma

Problem 1: The environment does not reveal the rewards of the arms
not pulled by the learner
⇒ the learner should gain information by repeatedly pulling all the arms
⇒ exploration

Problem 2: Whenever the learner pulls a bad arm, it suffers some regret
⇒ the learner should reduce the regret by repeatedly pulling the best arm
⇒ exploitation
Challenge: The learner should solve the exploration-exploitation
dilemma!
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Multi-armed Bandit Problems The Bandit Model

The Multi–armed Bandit Game (cont’d)

Examples
I Packet routing
I Clinical trials
I Web advertising
I Computer games
I Resource mining
I ...
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Multi-armed Bandit Problems The Bandit Model

The Stochastic Multi–armed Bandit Problem

Definition
The environment is stochastic

I Each arm has a distribution νi bounded in [0, 1] and
characterized by an expected value µi

I The rewards are i.i.d. Xi ,t ∼ νi (as in the MDP model)
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The Stochastic Multi–armed Bandit Problem (cont’d)

Notation
I Number of times arm i has been pulled after n rounds

Ti ,n =
n∑

t=1
I{It = i}

I Regret
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The Stochastic Multi–armed Bandit Problem (cont’d)

Notation
I Number of times arm i has been pulled after n rounds

Ti ,n =
n∑

t=1
I{It = i}

I Regret

Rn(A) = max
i=1,...,K

E
[ n∑

t=1
Xi ,t
]
− E

[ n∑
t=1

XIt ,t

]
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Multi-armed Bandit Problems The Bandit Model

The Stochastic Multi–armed Bandit Problem (cont’d)

Notation
I Number of times arm i has been pulled after n rounds

Ti ,n =
n∑

t=1
I{It = i}

I Regret

Rn(A) = max
i=1,...,K

(nµi)− E
[ n∑

t=1
XIt ,t

]
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Multi-armed Bandit Problems The Bandit Model

The Stochastic Multi–armed Bandit Problem (cont’d)

Notation
I Number of times arm i has been pulled after n rounds

Ti ,n =
n∑

t=1
I{It = i}

I Regret

Rn(A) = max
i=1,...,K

(nµi)−
K∑

i=1
E[Ti ,n]µi
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The Stochastic Multi–armed Bandit Problem (cont’d)

Notation
I Number of times arm i has been pulled after n rounds

Ti ,n =
n∑

t=1
I{It = i}

I Regret

Rn(A) = nµi∗ −
K∑

i=1
E[Ti ,n]µi
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The Stochastic Multi–armed Bandit Problem (cont’d)

Notation
I Number of times arm i has been pulled after n rounds

Ti ,n =
n∑

t=1
I{It = i}

I Regret
Rn(A) =

∑
i ̸=i∗

E[Ti ,n](µi∗ − µi)
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The Stochastic Multi–armed Bandit Problem (cont’d)

Notation
I Number of times arm i has been pulled after n rounds

Ti ,n =
n∑

t=1
I{It = i}

I Regret
Rn(A) =

∑
i ̸=i∗

E[Ti ,n]∆i
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Multi-armed Bandit Problems The Bandit Model

The Stochastic Multi–armed Bandit Problem (cont’d)

Notation
I Number of times arm i has been pulled after n rounds

Ti ,n =
n∑

t=1
I{It = i}

I Regret
Rn(A) =

∑
i ̸=i∗

E[Ti ,n]∆i

I Gap ∆i = µi∗ − µi
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Multi-armed Bandit Problems The Bandit Model

The Stochastic Multi–armed Bandit Problem (cont’d)

Rn(A) =
∑
i ̸=i∗

E[Ti ,n]∆i

⇒ we only need to study the expected number of pulls of the
suboptimal arms
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Outline
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Multi-armed Bandit Problems Bandit Algorithms: UCB

The Stochastic Multi–armed Bandit Problem (cont’d)

Optimism in Face of Uncertainty Learning (OFUL)

Whenever we are uncertain about the outcome of an arm, we
consider the best possible world and choose the best arm.

Why it works:
I If the best possible world is correct ⇒ no regret
I If the best possible world is wrong ⇒ the reduction in the

uncertainty is maximized
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The Stochastic Multi–armed Bandit Problem (cont’d)
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Multi-armed Bandit Problems Bandit Algorithms: UCB

The Stochastic Multi–armed Bandit Problem (cont’d)
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The Stochastic Multi–armed Bandit Problem (cont’d)
Optimism in face of uncertainty
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The Upper–Confidence Bound (UCB) Algorithm
The idea
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The Upper–Confidence Bound (UCB) Algorithm

Show time!
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The Upper–Confidence Bound (UCB) Algorithm (cont’d)

At each round t = 1, . . . , n
I Compute the score of each arm i

Bi = (optimistic score of arm i)

I Pull arm
It = arg max

i=1,...,K
Bi ,s,t

I Update the number of pulls TIt ,t = TIt ,t−1 + 1 and the other
statistics
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The Upper–Confidence Bound (UCB) Algorithm (cont’d)

The score (with parameters ρ and δ)

Bi = (optimistic score of arm i)
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The Upper–Confidence Bound (UCB) Algorithm (cont’d)

The score (with parameters ρ and δ)

Bi ,s,t = (optimistic score of arm i if pulled s times up to round t)
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The Upper–Confidence Bound (UCB) Algorithm (cont’d)

The score (with parameters ρ and δ)

Bi ,s,t = (optimistic score of arm i if pulled s times up to round t)

Optimism in face of uncertainty:
Current knowledge: average rewards µ̂i ,s
Current uncertainty : number of pulls s
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The Upper–Confidence Bound (UCB) Algorithm (cont’d)

The score (with parameters ρ and δ)

Bi ,s,t = knowledge +︸︷︷︸
optimism

uncertainty

Optimism in face of uncertainty:
Current knowledge: average rewards µ̂i ,s
Current uncertainty : number of pulls s
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The Upper–Confidence Bound (UCB) Algorithm (cont’d)

The score (with parameters ρ and δ)

Bi ,s,t = µ̂i ,s + ρ

√
log 1/δ

2s

Optimism in face of uncertainty:
Current knowledge: average rewards µ̂i ,s
Current uncertainty : number of pulls s

A. LAZARIC – Introduction to Reinforcement Learning Sept 14th, 2015 - 61/124



Multi-armed Bandit Problems Bandit Algorithms: UCB

The Upper–Confidence Bound (UCB) Algorithm (cont’d)

At each round t = 1, . . . , n
I Compute the score of each arm i

Bi ,t = µ̂i ,Ti,t + ρ

√
log(t)
2Ti ,t

I Pull arm
It = arg max

i=1,...,K
Bi ,t

I Update the number of pulls TIt ,t = TIt ,t−1 + 1 and µ̂i ,Ti,t
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The Upper–Confidence Bound (UCB) Algorithm (cont’d)

Theorem
Let X1, . . . ,Xn be i.i.d. samples from a distribution bounded in
[a, b], then for any δ ∈ (0, 1)

P

[∣∣∣1n
n∑

t=1
Xt − E[X1]

∣∣∣ > (b − a)
√

log 2/δ
2n

]
≤ δ
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The Upper–Confidence Bound (UCB) Algorithm (cont’d)

After s pulls, arm i

P

[
E[Xi ] ≤

1
s

s∑
t=1

Xi ,t +

√
log 1/δ

2s

]
≥ 1 − δ
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The Upper–Confidence Bound (UCB) Algorithm (cont’d)

After s pulls, arm i

P

[
µi ≤ µ̂i ,s +

√
log 1/δ

2s

]
≥ 1 − δ
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The Upper–Confidence Bound (UCB) Algorithm (cont’d)

After s pulls, arm i

P

[
µi ≤ µ̂i ,s +

√
log 1/δ

2s

]
≥ 1 − δ

⇒ UCB uses an upper confidence bound on the expectation
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The Upper–Confidence Bound (UCB) Algorithm (cont’d)

Theorem
For any set of K arms with distributions bounded in [0, b], if
δ = 1/t, then UCB(ρ) with ρ > 1, achieves a regret

Rn(A) ≤
∑
i ̸=i∗

[
4b2

∆i
ρ log(n) + ∆i

(
3
2 +

1
2(ρ− 1)

)]

A. LAZARIC – Introduction to Reinforcement Learning Sept 14th, 2015 - 65/124



Multi-armed Bandit Problems Bandit Algorithms: UCB

The Upper–Confidence Bound (UCB) Algorithm (cont’d)

Let K = 2 with i∗ = 1

Rn(A) ≤ O
(

1
∆
ρ log(n)

)
Remark 1: the cumulative regret slowly increases as log(n)

Remark 2: the smaller the gap the bigger the regret... why?
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Multi-armed Bandit Problems Bandit Algorithms: UCB

The Upper–Confidence Bound (UCB) Algorithm (cont’d)

Show time (again)!

A. LAZARIC – Introduction to Reinforcement Learning Sept 14th, 2015 - 67/124



Multi-armed Bandit Problems A (distribution-dependent) Lower Bound for the Regret
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Multi-armed Bandit Problems A (distribution-dependent) Lower Bound for the Regret

Asymptotically Optimal Strategies

I A strategy π is said to be consistent if, for any (νi)i ∈ FK ,

1
nE[Sn] → µ∗

I The strategy is efficient if for all θ ∈ [0, 1]K and all α > 0,

Rn(A) = o(nα)

I There are efficient strategies and we consider the best
achievable asymptotic performance among efficient strategies
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Multi-armed Bandit Problems A (distribution-dependent) Lower Bound for the Regret

The Bound of Lai and Robbins

One-parameter reward distribution νi = νθi , θi ∈ Θ ⊂ R .

Theorem [Lai and Robbins, ’85]
If π is an efficient strategy, then, for any θ ∈ ΘK ,

lim inf
n→∞

Rn(A)

log(n) ≥
∑

i :µi<µ∗

µ∗ − µi
KL(νi , ν∗)

where KL(ν, ν ′) denotes the Kullback-Leibler divergence

For example, in the Bernoulli case:

KL
(
B(p),B(q)

)
= dber(p, q) = p log p

q + (1 − p) log 1 − p
1 − q
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Multi-armed Bandit Problems A (distribution-dependent) Lower Bound for the Regret

The Bound of Burnetas and Katehakis
More general reward distributions νi ∈ Fi

Theorem [Burnetas and Katehakis, ’96]
If π is an efficient strategy, then, for any θ ∈ [0, 1]K ,

lim inf
n→∞

Rn
log(n) ≥

∑
i :µi<µ∗

µ∗ − µi
Kinf (νi , µ∗)

where

Kinf (νi , µ
∗) = inf

{
K (νi , ν

′) :

ν ′ ∈ Fi ,E (ν ′) ≥ µ∗}
ν∗

δ1

δ 1
2

δ0

Kinf (νa, µ⋆)

νa

µ∗
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Multi-armed Bandit Problems A (distribution-dependent) Lower Bound for the Regret

Intuition

I First assume that µ∗ is known and that n is fixed
I How many draws ni of νi are necessary to know that µi < µ∗

with probability at least 1 − 1/n?
I Test: H0 : µi = µ∗ against H1 : ν = νi
I Stein’s Lemma: if the first type error αni ≤ 1/n, then

βni % exp
(
− niKinf (νi , µ

∗)
)

=⇒ it can be smaller than 1/n if

ni ≥
log(n)

Kinf (νi , µ∗)

I How to do as well without knowing µ∗ and n in advance? Not
asymptotically?
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Multi-armed Bandit Problems Worst-case Performance

The Worst–case Performance

Remark: the regret bound is distribution–dependent

Rn(A; ∆) ≤ O
(

1
∆
ρ log(n)

)

Meaning: the algorithm is able to adapt to the specific problem at
hand!
Worst–case performance: what is the distribution which leads to
the worst possible performance of UCB? what is the
distribution–free performance of UCB?

Rn(A) = sup
∆

Rn(A;∆)
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Multi-armed Bandit Problems Worst-case Performance

The Worst–case Performance

Problem: it seems like if ∆ → 0 then the regret tends to infinity...

... nosense because the regret is defined as

Rn(A; ∆) = E[T2,n]∆

then if ∆i is small, the regret is also small...
In fact

Rn(A;∆) = min
{

O
(

1
∆
ρ log(n)

)
,E[T2,n]∆

}
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Multi-armed Bandit Problems Worst-case Performance

The Worst–case Performance

Then

Rn(A) = sup
∆

Rn(A;∆) = sup
∆

min
{

O
(

1
∆
ρ log(n)

)
, n∆

}
≈

√
n

for ∆ =
√

1/n.
Remark: Non-stochastic bandits: it is possible to ensure the
same O(

√
n) regret even without any stochastic asumption on the

reward process.

A. LAZARIC – Introduction to Reinforcement Learning Sept 14th, 2015 - 76/124



Multi-armed Bandit Problems Worst-case Performance

Tuning the confidence δ of UCB

Remark: UCB is an anytime algorithm (δ = 1/t)

Bi ,s,t = µ̂i ,s + ρ

√
log t
2s

Remark: If the time horizon n is known then the optimal choice is
δ = 1/n

Bi ,s,t = µ̂i ,s + ρ

√
log n
2s
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Multi-armed Bandit Problems Worst-case Performance

Tuning the confidence δ of UCB (cont’d)

Intuition: UCB should pull the suboptimal arms
I Enough: so as to understand which arm is the best
I Not too much: so as to keep the regret as small as possible

The confidence 1 − δ has the following impact (similar for ρ)
I Big 1 − δ: high level of exploration
I Small 1 − δ: high level of exploitation

Solution: depending on the time horizon, we can tune how to
trade-off between exploration and exploitation
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Tuning the confidence δ of UCB (cont’d)
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Multi-armed Bandit Problems Worst-case Performance

UCB Proof

Let’s dig into the (1 page and half!!) proof.

Define the (high-probability) event [statistics]

E =

{
∀i , s

∣∣∣µ̂i,s − µi

∣∣∣ ≤√ log 1/δ
2s

}
By Chernoff-Hoeffding P[E ] ≥ 1 − nKδ.

At time t we pull arm i [algorithm]

On the event E we have [math]
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2s

}
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√
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Multi-armed Bandit Problems Worst-case Performance

UCB Proof
Let’s dig into the (1 page and half!!) proof.

Define the (high-probability) event [statistics]

E =

{
∀i , s

∣∣∣µ̂i,s − µi

∣∣∣ ≤√ log 1/δ
2s

}
By Chernoff-Hoeffding P[E ] ≥ 1 − nKδ.
At time t we pull arm i [algorithm]

µ̂i,Ti,t−1 +

√
log 1/δ
2Ti,t−1

≥ µ̂i∗,Ti∗,t−1 +

√
log 1/δ
2Ti∗,t−1

On the event E we have [math]

µi + 2

√
log 1/δ
2Ti,t−1

≥ µi∗
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Multi-armed Bandit Problems Worst-case Performance

UCB Proof (cont’d)
Assume t is the last time i is pulled, then Ti,n = Ti,t−1 + 1, thus

µi + 2

√
log 1/δ

2(Ti,n − 1) ≥ µi∗

Reordering [math]

Ti,n ≤ log 1/δ
2∆2

i
+ 1

under event E and thus with probability 1 − nKδ.
Moving to the expectation [statistics]
Trading-off the two terms δ = 1/n2, we obtain

µ̂i,Ti,t−1 +

√
2 log n
2Ti,t−1

and

E[Ti,n] ≤
log n
∆2

i
+ 1 + K
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Multi-armed Bandit Problems Worst-case Performance

UCB Proof (cont’d)
Assume t is the last time i is pulled, then Ti,n = Ti,t−1 + 1, thus

µi + 2

√
log 1/δ

2(Ti,n − 1) ≥ µi∗

Reordering [math]

Ti,n ≤ log 1/δ
2∆2

i
+ 1

under event E and thus with probability 1 − nKδ.
Moving to the expectation [statistics]

E[Ti,n] = E[Ti,nIE ] + E[Ti,nIEC ]

Trading-off the two terms δ = 1/n2, we obtain

µ̂i,Ti,t−1 +

√
2 log n
2Ti,t−1

and

E[Ti,n] ≤
log n
∆2
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+ 1 + K
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UCB Proof (cont’d)
Assume t is the last time i is pulled, then Ti,n = Ti,t−1 + 1, thus
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i
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under event E and thus with probability 1 − nKδ.
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i
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√
2 log n
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Multi-armed Bandit Problems Worst-case Performance

UCB Proof (cont’d)

Trading-off the two terms δ = 1/n2, we obtain

µ̂i,Ti,t−1 +

√
2 log n
2Ti,t−1

and

E[Ti,n] ≤
log n
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Multi-armed Bandit Problems Worst-case Performance

Tuning the confidence δ of UCB (cont’d)

Multi–armed Bandit: the same for δ = 1/t and δ = 1/n...

... almost (i.e., in expectation)
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Tuning the confidence δ of UCB (cont’d)
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Multi-armed Bandit Problems Worst-case Performance

Tuning the confidence δ of UCB (cont’d)
The value–at–risk of the regret for UCB-anytime
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Multi-armed Bandit Problems Worst-case Performance

Tuning the ρ of UCB (cont’d)
UCB values (for the δ = 1/n algorithm)

Bi,s = µ̂i,s + ρ

√
log n
2s

Theory
I ρ < 0.5, polynomial regret w.r.t. n
I ρ > 0.5, logarithmic regret w.r.t. n

Practice: ρ = 0.2 is often the best choice
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Multi-armed Bandit Problems Worst-case Performance

Improvements: UCB-V

Idea: use empirical Bernstein bounds for more accurate c.i.

Algorithm
I Compute the score of each arm iI Pull arm

It = arg max
i=1,...,K

Bi,t

I Update the number of pulls TIt ,t , µ̂i,Ti,t
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Improvements: UCB-V

Idea: use empirical Bernstein bounds for more accurate c.i.

Algorithm
I Compute the score of each arm i

Bi,t = µ̂i,Ti,t +

√
2σ̂2

i,Ti,t
log t

Ti,t
+

8 log t
3Ti,t

I Pull arm
It = arg max

i=1,...,K
Bi,t

I Update the number of pulls TIt ,t , µ̂i,Ti,t and σ̂2
i,Ti,t
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Multi-armed Bandit Problems Worst-case Performance

Improvements: UCB-V
Idea: use empirical Bernstein bounds for more accurate c.i.

Algorithm
I Compute the score of each arm i

Bi,t = µ̂i,Ti,t +

√
2σ̂2

i,Ti,t
log t

Ti,t
+

8 log t
3Ti,t

I Pull arm
It = arg max

i=1,...,K
Bi,t

I Update the number of pulls TIt ,t , µ̂i,Ti,t and σ̂2
i,Ti,t

Regret
Rn ≤ O

( 1
∆

log n
)
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Improvements: UCB-V
Idea: use empirical Bernstein bounds for more accurate c.i.

Algorithm
I Compute the score of each arm i

Bi,t = µ̂i,Ti,t +

√
2σ̂2

i,Ti,t
log t

Ti,t
+

8 log t
3Ti,t

I Pull arm
It = arg max

i=1,...,K
Bi,t

I Update the number of pulls TIt ,t , µ̂i,Ti,t and σ̂2
i,Ti,t

Regret

Rn ≤ O
(σ2

∆
log n

)
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Multi-armed Bandit Problems Worst-case Performance

Improvements: KL-UCB

Idea: use even tighter c.i. based on Kullback–Leibler divergence

d(p, q) = p log p
q + (1 − p) log 1 − p

1 − q

Algorithm: Compute the score of each arm i (convex optimization)

Bi,t = max
{

q ∈ [0, 1] : Ti,td
(
µ̂i,Ti,t , q

)
≤ log(t) + c log(log(t))

}
Regret: pulls to suboptimal arms

E
[
Ti,n

]
≤ (1 + ϵ)

log(n)
d(µi , µ∗)

+ C1 log(log(n)) + C2(ϵ)

nβ(ϵ)

where d(µi , µ
∗) > 2∆2

i

A. LAZARIC – Introduction to Reinforcement Learning Sept 14th, 2015 - 86/124



Multi-armed Bandit Problems Worst-case Performance

Improvements: KL-UCB

Idea: use even tighter c.i. based on Kullback–Leibler divergence

d(p, q) = p log p
q + (1 − p) log 1 − p

1 − q

Algorithm: Compute the score of each arm i (convex optimization)

Bi,t = max
{

q ∈ [0, 1] : Ti,td
(
µ̂i,Ti,t , q

)
≤ log(t) + c log(log(t))

}

Regret: pulls to suboptimal arms

E
[
Ti,n

]
≤ (1 + ϵ)

log(n)
d(µi , µ∗)

+ C1 log(log(n)) + C2(ϵ)

nβ(ϵ)

where d(µi , µ
∗) > 2∆2

i

A. LAZARIC – Introduction to Reinforcement Learning Sept 14th, 2015 - 86/124



Multi-armed Bandit Problems Worst-case Performance

Improvements: KL-UCB

Idea: use even tighter c.i. based on Kullback–Leibler divergence

d(p, q) = p log p
q + (1 − p) log 1 − p

1 − q

Algorithm: Compute the score of each arm i (convex optimization)

Bi,t = max
{

q ∈ [0, 1] : Ti,td
(
µ̂i,Ti,t , q

)
≤ log(t) + c log(log(t))

}
Regret: pulls to suboptimal arms

E
[
Ti,n

]
≤ (1 + ϵ)

log(n)
d(µi , µ∗)

+ C1 log(log(n)) + C2(ϵ)

nβ(ϵ)

where d(µi , µ
∗) > 2∆2

i
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Multi-armed Bandit Problems Worst-case Performance

Improvements: Thompson strategy

Idea: Use a Bayesian approach to estimate the means {µi}i

Algorithm: Assuming Bernoulli arms and a Beta prior on the mean
I Compute

Di,t = Beta(Si,t + 1,Fi,t + 1)
I Draw a mean sample as

µ̃i,t ∼ Di,t

I Pull arm
It = arg max µ̃i,t

I If XIt ,t = 1 update SIt ,t+1 = SIt ,t + 1, else update FIt ,t+1 = FIt ,t + 1

Regret:

lim
n→∞

Rn
log(n) =

K∑
i=1

∆i
d(µi , µ∗)
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Multi-armed Bandit Problems Worst-case Performance

How to efficiently explore an MDP

The Exploration-Exploitation
Dilemma

Multi-Armed Bandit

Contextual Linear Bandit

Reinforcement Learning
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Multi-armed Bandit Problems Worst-case Performance

The Contextual Linear Bandit Problem

Motivating Examples
I Different users may have different preferences
I The set of available news may change over time
I We want to minimise the regret w.r.t. the best news for each

user
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Multi-armed Bandit Problems Worst-case Performance

The Contextual Linear Bandit Problem
The problem: at each time t = 1, . . . , n

I User ut arrives and a set of news At is provided
I The user ut together with a news a ∈ At are described by a

feature vector xt,a
I The learner chooses a news at and receives a reward rt,at

The optimal news: at each time t = 1, . . . , n, the optimal news is

a∗t = arg max
a∈At

E[rt,a]

The regret:

Rn = E
[ n∑

t=1
rt,a∗t

]
− E

[ n∑
t=1

rt,at

]
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Multi-armed Bandit Problems Worst-case Performance

The Contextual Linear Bandit Problem

The linear assumption: the reward is a linear combination
between the context and an unknown parameter vector

E[rt,a|xt,a] = x⊤
t,aθa
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Multi-armed Bandit Problems Worst-case Performance

The Contextual Linear Bandit Problem

The linear regression estimate:
I Ta = {t : at = a}
I Construct the design matrix of all the contexts observed when

action a has been taken Da ∈ R|Ta|×d

I Construct the reward vector of all the rewards observed when
action a has been taken ca ∈ R|Ta|

I Estimate θa as

θ̂a = (D⊤
a Da + I)−1D⊤

a ca
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Multi-armed Bandit Problems Worst-case Performance

The Contextual Linear Bandit Problem

Optimism in face of uncertainty: the LinUCB algorithm
I Chernoff-Hoeffding in this case becomes∣∣x⊤

t,aθ̂a − E[rt,a|xt,a]
∣∣ ≤ α

√
x⊤

t,a(D⊤
a Da + I)−1xt,a

I and the UCB strategy is

at = arg max
a∈At

x⊤
t,aθ̂a + α

√
x⊤

t,a(D⊤
a Da + I)−1xt,a
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Multi-armed Bandit Problems Worst-case Performance

The Contextual Linear Bandit Problem

The evaluation problem
I Online evaluation: too expensive
I Offline evaluation: how to use the logged data?
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Multi-armed Bandit Problems Worst-case Performance

The Contextual Linear Bandit Problem

Evaluation from logged data
I Assumption 1: contexts and rewards are i.i.d. from a

stationary distribution

(x1, . . . , xK , r1, . . . , rK ) ∼ D

I Assumption 2: the logging strategy is random
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Multi-armed Bandit Problems Worst-case Performance

The Contextual Linear Bandit Problem
Evaluation from logged data: given a bandit strategy π, a
desired number of samples T , and a (infinite) stream of data
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Extensions Some Examples

Non-stationary Bandits

I Changepoint : reward
distributions change abruptly

I Goal : follow the best arm
I Application : scanning

tunnelling microscope

I Variants D-UCB et SW-UCB including a progressive discount
of the past

I Bounds O(
√

n log n) are proved, which is (almost) optimal
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Extensions Some Examples

Generalized Linear Bandits

I Bandit with contextual information:

E[Xt |It ] = µ(m′
Itθ∗)

where θ∗ ∈ Rd is an unkown parameter and µ : R → R is a
link function

I Example : binary rewards

µ(x) = exp(x)
1 + exp(x)

I Application : targeted web ads
I GLM-UCB : regret bound depending on dimension d and not

on the number of arms
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Extensions Some Examples

Stochastic Optimization

I Goal : Find the maximum of a
function f : C ⊂ Rd → R
(possibly) observed in noise

I Application : DAS
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I Model : f is the realization of a Gaussian Process (or has a
small norm in some RKHS)

I GP-UCB : evaluate f at the point x ∈ C where the confidence
interval for f (x) has the highest upper-bound
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Extensions Best Arm Identification

Motivation
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Extensions Best Arm Identification

Goal ̸= regret minimization

Improve performance:

Ü fixed number of test users − > smaller probability of error
Ü fixed probability of error − > fewer test users

Tools: sequential allocation and stopping
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Extensions Best Arm Identification

The model
A two-armed bandit model is

I a set ν = (ν1, ν2) of two probability distributions (’arms’) with
respective means µ1 and µ2

I a∗ = argmaxa µa is the (unknown) best am

To find the best arm, an agent interacts with the bandit model
with

I a sampling rule (At)t∈N where At ∈ {1, 2} is the arm chosen
at time t (based on past observations) − > a sample
Zt ∼ νAt is observed

I a stopping rule τ indicating when he stops sampling the arms
I a recommendation rule âτ ∈ {1, 2} indicating which arm he

thinks is best (at the end of the interaction)

nada
In classical A/B Testing, the sampling rule At is uniform on
{1, 2} and the stopping rule τ = t is fixed in advance.
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Extensions Best Arm Identification

Two possible goals
The agent’s goal is to design a strategy A = ((At), τ, âτ ) satisfying

Fixed-budget setting Fixed-confidence setting

τ = t Pν(âτ ̸= a∗) ≤ δ

pt(ν) := Pν(ât ̸= a∗) as small Eν [τ ] as small
as possible as possible

An algorithm using uniform sampling is

Fixed-budget setting Fixed-confidence setting

a classical test of a sequential test of
(µ1 > µ2) against (µ1 < µ2) (µ1 > µ2) against (µ1 < µ2)

based on t samples with probability of error
uniformly bounded by δ

[Siegmund 85]: sequential tests can save samples !
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Extensions Exploration with Probabilistic Expert Advice

The model
Optimal Discovery with Probabilistic Expert Advice: Finite Time
Analysis and Macroscopic Optimality, JMLR 2013
joint work with S. Bubeck and D. Ernst

I Subset A ⊂ X of
important items

I |X | ≫ 1, |A| ≪ |X |
I Access to X only by

probabilistic experts
(Pi)1≤i≤K :
sequential
independent draws

Goal: discover rapidly the elements of A
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Extensions Exploration with Probabilistic Expert Advice

Optimal Exploration with Probabilistic Expert Advice

Search space : A ⊂ Ω discrete set
Probabilistic experts : Pi ∈ M1(Ω) for i ∈ {1, . . . ,K}

Requests : at time t, calling expert It yields a realization of
Xt = XIt ,t independent with law Pa

Goal : find as many distinct elements of A as possible with
few requests :

Fn = Card (A ∩ {X1, . . . ,Xn})
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Extensions Exploration with Probabilistic Expert Advice

Goal
At each time step t = 1, 2, . . . :

I pick an index It = πt
(
I1,Y1, . . . , Is−1,Ys−1

)
∈ {1, . . . ,K}

according to past observations
I observe Yt = XIt ,nIt ,t

∼ PIt , where

ni ,t =
∑
s≤t

I{Is = i}

Goal: design the strategy π = (πt)t so as to maximize the number
of important items found after t requests

Fπ(t) =
∣∣∣A ∩

{
Y1, . . . ,Yt

}∣∣∣
Assumption: non-intersecting supports

A ∩ supp(Pi) ∩ supp(Pj) = ∅ for i ̸= j
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Extensions Exploration with Probabilistic Expert Advice

Is it a Bandit Problem ?

It looks like a bandit problem. . .
I sequential choices among K options
I want to maximize cumulative rewards
I exploration vs exploitation dilemma

. . . but it is not a bandit problem !
I rewards are not i.i.d.
I destructive rewards: no interest to observe twice the same

important item
I all strategies eventually equivalent
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Extensions Exploration with Probabilistic Expert Advice

The oracle strategy

Proposition: Under the non-intersecting support hypothesis, the
greedy oracle strategy selecting the expert with highest ‘missing
mass’

I∗t ∈ arg max
1≤i≤K

Pi (A \ {Y1, . . . ,Yt})

is optimal: for every possible strategy π, E
[
Fπ(t)

]
≤ E

[
F ∗(t)

]
.

Remark: the proposition if false if the supports may intersect

=⇒ estimate the “missing mass of important items”!
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Extensions Exploration with Probabilistic Expert Advice

Missing mass estimation
Let us first focus on one expert i : P = Pi ,Xn = Xi ,n

X1, . . . ,Xn independent draws of P

On(x) =
n∑

m=1
I{Xm = x}

How to ’estimate’ the total mass of the unseen important items

Rn =
∑
x∈A

P(x)I{On(x) = 0} ?
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Extensions Exploration with Probabilistic Expert Advice

The Good-Turing Estimator
Idea: use the hapaxes = items seen only once (linguistic)

R̂n =
Un
n , where Un =

∑
x∈A

I{On(x) = 1}

Lemma [Good ’53]: For every distribution P,

0 ≤ E
[
R̂n
]
− E

[
Rn
]
≤ 1

n

Proposition: With probability at least 1 − δ for every P,

R̂n − 1
n − (1 +

√
2)
√

log(4/δ)
n ≤ Rn ≤ R̂n + (1 +

√
2)
√

log(4/δ)
n

See [McAllester and Schapire ’00, McAllester and Ortiz ’03]:
I deviations of R̂n: McDiarmid’s inequality
I deviations of Rn: negative association
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Extensions Exploration with Probabilistic Expert Advice

The Good-UCB algorithm [Bubeck, Ernst & G.]

Optimistic algorithm based on Good-Turing’s estimator :

It+1 = arg max
i∈{1,...,K}

{
Hi(t)
Ni(t)

+ c

√
log (t)
Ni(t)

}

I Ni(t) = number of draws of Pi up to time t
I Hi(t) = number of elements of A seen exactly once thanks to

Pi
I c = tuning parameter
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Extensions Exploration with Probabilistic Expert Advice

Classical analysis

Theorem: For any t ≥ 1, under the non-intersecting support
assumption, Good-UCB (with constant C = (1 +

√
2)
√

3) satisfies

E
[
F ∗(t)− F UCB(t)

]
≤ 17

√
Kt log(t) + 20

√
Kt + K + K log(t/K )

Remark: Usual result for bandit problem, but not-so-simple analysis
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Extensions Exploration with Probabilistic Expert Advice

A Typical Run of Good-UCB
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Extensions Exploration with Probabilistic Expert Advice

The macroscopic limit
I Restricted framework: Pi = U{1, . . . ,N}
I N → ∞
I |A ∩ supp(Pi)|/N → qi ∈ (0, 1), q =

∑
i qi
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Extensions Exploration with Probabilistic Expert Advice

The Oracle behaviour

The limiting discovery process of the Oracle strategy is
deterministic

Proposition: For every λ ∈ (0, q1), for every sequence (λN)N
converging to λ as N goes to infinity, almost surely

lim
N→∞

T N
∗ (λN)

N =
∑

i

(
log qi

λ

)
+
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Extensions Exploration with Probabilistic Expert Advice

Oracle vs. uniform sampling
Oracle: The proportion of important items not found after

Nt draws tends to

q−F ∗(t) = I(t)qI(t) exp (−t/I(t)) ≤ KqK exp(−t/K )

with qK =
(∏K

i=1 qi
)1/K

the geometric mean of the
(qi)i .

Uniform: The proportion of important items not found after
Nt draws tends to Kq̄K exp(−t/K )

=⇒ Asymptotic ratio of efficiency

ρ(q) = q̄K
qK

=
1
K
∑k

i=1 qi(∏k
i=1 qi

)1/K ≥ 1

larger if the (qi)i are unbalanced
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Extensions Exploration with Probabilistic Expert Advice

Macroscopic optimality

Theorem: Take C = (1 +
√

2)
√

c + 2 with c > 3/2 in the
Good-UCB algorithm.

I For every sequence (λN)N converging to λ as N goes to
infinity, almost surely

lim sup
N→+∞

T N
UCB(λ

N)

N ≤
∑

i

(
log qi

λ

)
+

I The proportion of items found after Nt steps F GUCB

converges uniformly to F ∗ as N goes to infinity
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Extensions Exploration with Probabilistic Expert Advice

Simulation

nada
Number of items found by Good-UCB (line), the oracle (bold dashed), and by
uniform sampling (light dotted) as a function of time, for sample sizes N =

128,N = 500, N = 1000 and N = 10000, in an environment with 7 experts.
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