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» Autonomous robotics

» Elder care

» Exploration of unknown /
dangerous environments
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Why: Important Problems

» Autonomous robotics

» Financial applications

» Trading execution algorithms
» Portfolio management

» Option pricing
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» Financial applications
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Why: Important Problems

» Autonomous robotics

» Financial applications

» Energy management
> Energy grid integration
» Maintenance scheduling
> Energy market regulation

» Energy production
management
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» Social applications > Bike sharing optimization
» Election campaign
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What: Sequential Decision-Making under Uncertainty

Environment

action / state /
actuation perception

Agent
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What: A Different Machine Learning Paradigm

» Supervised learning: an expert (supervisor) provides examples
of the right strategy (e.g., classification of clinical images).
Supervision is expensive.
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» Unsupervised learning: different objects are clustered together
by similarity (e.g., clustering of images on the basis of their
similarity). No actual performance is optimized.
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What: A Different Machine Learning Paradigm

» Supervised learning: an expert (supervisor) provides examples
of the right strategy (e.g., classification of clinical images).
Supervision is expensive.

» Unsupervised learning: different objects are clustered together
by similarity (e.g., clustering of images on the basis of their
similarity). No actual performance is optimized.

» Reinforcement learning: learning by direct interaction (e.g.,
autonomous robotics). Minimum level of supervision (reward)
and maximization of long term performance.

A
<%
¢5".":'.§.=§z3.
. 3";"4 :'ﬁ::% A. LAZARIC — Introduction to Reinforcement Learning Sept 14th, 2015 -




Motivation Outline

Outline

Motivation
Interactive Learning Problems
A Model for Sequential Decision Making
Outline

Multi-armed Bandit Problems

Extensions

A. LAZARIC — Introduction to Reinforcement Learning Sept 14th, 2015 - 16/



Motivation Outline

How: the Course

tion to Reinforcement Learnin,



Motivation Outline

How: the Course

coursera

education for everyone action /

actuation|

state /
lperception

Learning
Agent

A. LAZARIC — Introduction to Reinforcement Learning Sept 14th, 2015 - 17/124



Motivation Outline

How: the Course

coursera

education for everyone

action /
actuation|

state /
lperception

Learning
Agent

Formal and rigorous approach to the RL's way to
sequential decision-making under uncertainty
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How: the Course

» How to model an RL problem

> Models without states = MAB

» How to solve exactly an (small) MDP

» Hands-on session! (2h)

» How to solve approximately a (larger) MDP
» How to solve incrementally an MDP

» How to efficiently explore an MDP
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How to model an RL problem

The Markov Decision Process

The Model
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The Agent-Environment Interaction Model

Environment

Critic

action / d state /
actuation rewar perception
Y
Learning
Agent
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The Agent-Environment Interaction Model

The environment

Controllability: fully (e.g., chess) or partially (e.g., portfolio optimization)
Uncertainty: deterministic (e.g., chess) or stochastic (e.g., backgammon)
Reactive: adversarial (e.g., chess) or fixed (e.g., tetris)

Observability: full (e.g., chess) or partial (e.g., robotics)

Availability: known (e.g., chess) or unknown (e.g., robotics)

vVvyVvyyvyy
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The environment
Controllability: fully (e.g., chess) or partially (e.g., portfolio optimization)
Uncertainty: deterministic (e.g., chess) or stochastic (e.g., backgammon)
Reactive: adversarial (e.g., chess) or fixed (e.g., tetris)
Observability: full (e.g., chess) or partial (e.g., robotics)
Availability: known (e.g., chess) or unknown (e.g., robotics)
The critic
> Sparse (e.g., win or loose) vs informative (e.g., closer or further)
> Preference reward
> Frequent or sporadic
> Known or unknown
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The Agent-Environment Interaction Model

The environment
Controllability: fully (e.g., chess) or partially (e.g., portfolio optimization)
Uncertainty: deterministic (e.g., chess) or stochastic (e.g., backgammon)
Reactive: adversarial (e.g., chess) or fixed (e.g., tetris)
Observability: full (e.g., chess) or partial (e.g., robotics)
Availability: known (e.g., chess) or unknown (e.g., robotics)
The critic
> Sparse (e.g., win or loose) vs informative (e.g., closer or further)
> Preference reward
> Frequent or sporadic
> Known or unknown

vVvyVvyyvyy

The agent
» Open loop control
> Close loop control (i.e., adaptive)
> Non-stationary close loop control (i.e., learning)
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Markov Decision Process

Definition (Markov decision process [1, 4, 3, 5, 2])

A Markov decision process is defined as a tuple M = (X, A, p,r):
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Markov Decision Process

Definition (Markov decision process [1, 4, 3, 5, 2])

A Markov decision process is defined as a tuple M = (X, A, p,r):

» X s the state space,
» A is the action space,

» p(y|x, a) is the transition probability with

p(y’X7a) = IED(XH-l = ylxt = X,adt = 3),
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Markov Decision Process

Definition (Markov decision process [1, 4, 3, 5, 2])

A Markov decision process is defined as a tuple M = (X, A, p,r):

» X s the state space,
» A is the action space,

» p(y|x, a) is the transition probability with
p(y’X7 3) = IED(XH-l = ylxt = X,adt = 3),

» r(x,a,y) is the reward of transition (x, a,y).
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Motivation Outline

Markov Decision Process: the Assumptions

Time assumption: time is discrete

t—t+1

Possible relaxations
> Identify the proper time granularity
» Most of MDP literature extends to continuous time
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Motivation Outline

Markov Decision Process: the Assumptions

Markov assumption: the current state x and action a are a
sufficient statistics for the next state y

p(y|x,a) = P(xer1 = y[x: = x, a: = a)

Possible relaxations
» Define a new state hy = (x¢, X¢—1, Xe—2, - - )
» Move to partially observable MDP (PO-MDP)

» Move to predictive state representation (PSR) model

b
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Markov Decision Process: the Assumptions

Reward assumption: the reward is uniquely defined by a transition
(or part of it)

r(x,a,y)

Possible relaxations
» Distinguish between global goal and reward function

» Move to inverse reinforcement learning (IRL) to induce the
reward function from desired behaviors

b
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Markov Decision Process: the Assumptions

Stationarity assumption: the dynamics and reward do not change
over time

p(y|Xaa):P(Xt+l:y’Xt:X7at:a) r(Xvav.y)

Possible relaxations

» Identify and remove the non-stationary components (e.g.,
cyclo-stationary dynamics)

> Identify the time-scale of the changes

b
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Question

Is the MDP formalism powerful enough?

= Let’'s try!
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Motivation Outline

Example: the Retail Store Management Problem

Description. At each month t, a store contains x; items of a specific
goods and the demand for that goods is D;. At the end of each month
the manager of the store can order a; more items from his supplier.
Furthermore we know that

> The cost of maintaining an inventory of x is h(x).
> The cost to order a items is C(a).
> The income for selling g items is f(q).

> |f the demand D is bigger than the available inventory x, customers
that cannot be served leave.

> The value of the remaining inventory at the end of the year is g(x).

> Constraint: the store has a maximum capacity M.
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Example: the Retail Store Management Problem

> State space: x € X ={0,1,..., M}.
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Example: the Retail Store Management Problem

> State space: x € X ={0,1,..., M}.

> Action space: it is not possible to order more items that the
capacity of the store, then the action space should depend on the
current state. Formally, at state x, a € A(x) ={0,1,...,M — x}.
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Example: the Retail Store Management Problem

> State space: x € X ={0,1,..., M}.

> Action space: it is not possible to order more items that the
capacity of the store, then the action space should depend on the
current state. Formally, at state x, a € A(x) ={0,1,...,M — x}.

> Dynamics: xpp1 = [x¢ + ar — D¢] ™.
Problem: the dynamics should be Markov and stationary!
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> State space: x € X ={0,1,..., M}.

> Action space: it is not possible to order more items that the
capacity of the store, then the action space should depend on the
current state. Formally, at state x, a € A(x) ={0,1,...,M — x}.

> Dynamics: xpp1 = [x¢ + ar — D¢] ™.
Problem: the dynamics should be Markov and stationary!
» The demand D; is stochastic and time-independent. Formally,

D, & p.

A. LAZARIC — Introduction to Reinforcement Learning Sept 14th, 2015 -



Motivation Outline

Example: the Retail Store Management Problem

> State space: x € X ={0,1,..., M}.

> Action space: it is not possible to order more items that the
capacity of the store, then the action space should depend on the
current state. Formally, at state x, a € A(x) ={0,1,...,M — x}.

> Dynamics: xpp1 = [x¢ + ar — D¢] ™.
Problem: the dynamics should be Markov and stationary!
» The demand D; is stochastic and time-independent. Formally,
p, "4 p
t " -

» Reward: rr = _C(at) - h(Xt + at) + f([Xt + ar — Xt+1]+)
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Policy

Definition (Policy)

A decision rule 7y can be

» Deterministic: 7y : X — A,
» Stochastic: m : X — A(A),

A. LAZARIC — Introduction to Reinforcement Learning Sept 14th, 2015 - 30/12
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Policy

Definition (Policy)

A decision rule 7y can be

» Deterministic: 7y : X — A,
» Stochastic: m : X — A(A),
A policy (strategy, plan) can be
» Non-stationary: m = (mg, 71,72, ... ),

» Stationary (Markovian): 7 = (w,m,7,...).

A. LAZARIC — Introduction to Reinforcement Learning Sept 14th, 2015 - 30/124



Motivation Outline

Policy

Definition (Policy)

A decision rule 7y can be

» Deterministic: 7 : X — A,
» Stochastic: m : X — A(A),
A policy (strategy, plan) can be
» Non-stationary: m = (mg, 71,72, ... ),

» Stationary (Markovian): 7 = (w,m,7,...).

Remark: MDP M + stationary policy m = Markov chain of state
X and transition probability p(y|x) = p(y|x, 7(x)).
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Motivation Outline

Example: the Retail Store Management Problem

» Stationary policy 1

M—-x ifx<M/4
m(x) = .
0 otherwise

» Stationary policy 2
7(x) = max{(M — x)/2 — x; 0}

» Non-stationary policy

M —x ift<6
m(x) = |_(M _ X)/5J otherwise
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Multi-armed Bandit Problems

Outline

Motivation

Multi-armed Bandit Problems
Introduction
The Bandit Model
Bandit Algorithms: UCB
A (distribution-dependent) Lower Bound for the Regret
Worst-case Performance

Extensions
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Multi-armed Bandit Problems Introduction
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Motivation

Multi-armed Bandit Problems
Introduction
The Bandit Model
Bandit Algorithms: UCB
A (distribution-dependent) Lower Bound for the Regret
Worst-case Performance

Extensions

A. LAZARIC — Introduction to Reinforcement Learning Sept 14th, 2015 - 33/124



Multi-armed Bandit Problems Introduction

How to efficiently explore an MDP

The Exploration-Exploitation
Dilemma
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Multi-armed Bandit Problems Introduction

How to efficiently explore an MDP

The Exploration-Exploitation
Dilemma

Multi-Armed Bandit
Contextual Linear Bandit

Reinforcement Learning
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Multi-armed Bandit Problems Introduction

The Navigation Problem
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The Navigation Problem
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Multi-armed Bandit Problems Introduction

The Navigation Problem

Question: which route should we take?
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The Navigation Problem

Question: which route should we take?

Problem: each day we obtain a limited feedback: traveling time
of the chosen route
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Multi-armed Bandit Problems Introduction

The Navigation Problem

Question: which route should we take?

Problem: each day we obtain a limited feedback: traveling time
of the chosen route

Results: if we do not repeatedly try different options we cannot
learn.
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Multi-armed Bandit Problems Introduction

The Navigation Problem

Question: which route should we take?

Problem: each day we obtain a limited feedback: traveling time
of the chosen route

Results: if we do not repeatedly try different options we cannot
learn.

Solution: trade off between optimization and learning.
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Multi-armed Bandit Problems Introduction

Learning the Optimal Policy

Fori=1,...,n
1. Sett=0
2. Set initial state xg
3. While (x; not terminal)

3.1 Take action a; according to a suitable exploration policy
3.2 Observe next state x;11 and reward r;

3.3 Compute the temporal difference ¢; (e.g., Q-learning)

3.4 Update the Q-function

a(Xh a) = @(xt, ar) + oxe, ar)0:
35 Sett=t+1
EndWhile
EndFor
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Multi-armed Bandit Problems Introduction

Learning the Optimal Policy

Fori=1,...,n
1. Sett=0
2. Set initial state xo
3. While (x; not terminal)

3.1 Take action a; = arg max, Q(x;, a)

3.2 Observe next state x;11 and reward r;

3.3 Compute the temporal difference ¢; (e.g., Q-learning)
3.4 Update the Q-function

@(xt, at) = @(Xh at) + a(Xh at)(st
35 Sett=t+1

EndWhile
EndFor
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Multi-armed Bandit Problems Introduction

Learning the Optimal Policy

Fori=1,...,n

1. Sett=0

2. Set initial state xo

3. While (x; not terminal)
3.1 Take action a; = arg max, Q(x;, a)
3.2 Observe next state x;11 and reward r;
3.3 Compute the temporal difference ¢; (e.g., Q-learning)
3.4 Update the Q-function

@(xt, at) = @(Xt, at) + a(Xh at)(st
35 Sett=t+1
EndWhile

EndFor
= Nno convergence
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Multi-armed Bandit Problems Introduction

Learning the Optimal Policy

Fori=1,...,n

1. Sett=0

2. Set initial state xo

3. While (x; not terminal)
3.1 Take action a; ~ U(A)
3.2 Observe next state x;11 and reward r;
3.3 Compute the temporal difference ¢; (e.g., Q-learning)
3.4 Update the Q-function

@(xt, at) = @(Xh at) + a(Xh at)(st
35 Sett=t+1

EndWhile
EndFor
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Multi-armed Bandit Problems Introduction

Learning the Optimal Policy

Fori=1,...,n

1. Sett=0

2. Set initial state xo

3. While (x; not terminal)
3.1 Take action a; ~ U(A)
3.2 Observe next state x;11 and reward r;
3.3 Compute the temporal difference ¢; (e.g., Q-learning)
3.4 Update the Q-function

@(xt, at) = @(Xt, at) + a(Xh at)(st
35 Sett=t+1
EndWhile

EndFor
= very poor rewards
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Multi-armed Bandit Problems The Bandit Model

Outline

Motivation

Multi-armed Bandit Problems
Introduction
The Bandit Model
Bandit Algorithms: UCB
A (distribution-dependent) Lower Bound for the Regret
Worst-case Performance

Extensions
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Multi-armed Bandit Problems =~ The Bandit Model

How to efficiently explore an MDP

The Exploration-Exploitation
Dilemma

Multi-Armed Bandit

A. LAZARIC — Introduction to Reinforcement Learning Sept 14th, 2015 - 41/124



Multi-armed Bandit Problems =~ The Bandit Model

Reducing RL down to Multi-Armed Bandit

Definition (Markov decision process [1, 4, 3, 5, 2])
A Markov decision process is defined as a tuple M = (X, A, p,r):

> X—isthestatc-spacey

» A is the action space,

A. LAZARIC — Introduction to Reinforcement Learning Sept 14th, 2015 - 42/124



Multi-armed Bandit Problems =~ The Bandit Model

Notice

For coherence with the bandit literature we use the notation

» i =1,...,K set of possible actions
» t=1,...,ntime
» [, action selected at time t

v

Xi,+ reward for action / at time t

A. LAZARIC — Introduction to Reinforcement Learning Sept 14th, 2015 - 43/



Multi-armed Bandit Problems The Bandit Model

Learning the Optimal Policy

Objective: learn the optimal policy 7* as efficiently as possible
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Multi-armed Bandit Problems =~ The Bandit Model

Learning the Optimal Policy

Objective: learn the optimal policy 7* as efficiently as possible
Fort=1,...,n

1. Sett=0

2. Set-initial-statexp

3. While-benotterminal)
3.1 Take action a;

3.2 Observe next-statesgrr—and reward r;
3.3 Sett+=++1
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Multi-armed Bandit Problems The Bandit Model

The Multi—armed Bandit Protocol

The learner has i = 1,..., K arms (actions)

At eachround t=1,...,n

A. LAZARIC — Introduction to Reinforcement Learning
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Multi-armed Bandit Problems The Bandit Model

The Multi—armed Bandit Protocol

The learner has i = 1,..., K arms (actions)

At eachround t=1,...,n
> At the same time

A. LAZARIC — Introduction to Reinforcement Learning Sept 14th, 2015 - 45/124



Multi-armed Bandit Problems The Bandit Model

The Multi—armed Bandit Protocol

The learner has i = 1,..., K arms (actions)

At eachround t=1,...,n
> At the same time

» The environment chooses a vector of rewards {X; ,};
» The learner chooses an arm /;
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Multi-armed Bandit Problems =~ The Bandit Model

The Multi—armed Bandit Protocol

The learner has i = 1,..., K arms (actions)

At eachround t=1,...,n
> At the same time
» The environment chooses a vector of rewards {X; ,};
» The learner chooses an arm /;

» The learner receives a reward X, ;

=3

5
o o o

3

'S

A. LAZARIC — Introduction to Reinforcement Learning Sept 14th, 2015 - 45/



Multi-armed Bandit Problems =~ The Bandit Model

The Multi—armed Bandit Protocol

The learner has i = 1,..., K arms (actions)

At eachround t=1,...,n
> At the same time
» The environment chooses a vector of rewards {X; ,};
» The learner chooses an arm /;

» The learner receives a reward X, ;

» The environment does not reveal the rewards of the other
arms

=3

5
o o o

3

'S
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Multi-armed Bandit Problems =~ The Bandit Model

Paradigmatic Example

Imagine you are a doctor:
> patients visit you one after another for a given disease
» you prescribe one of the (say) 5 treatments available
» the treatments are not equally efficient

» you do not know which one is the best, you observe the effect
of the prescribed treatment on each patient

= What do you do?
» You must choose each prescription using only the previous
observations

> Your goal is not to estimate each treatment's efficiency
precisely, but to heal as many patients as possible
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Multi-armed Bandit Problems =~ The Bandit Model

The (stochastic) Multi-Armed Bandit Model

Environment K arms with parameters 6 = (01, ...,0k) such that
for any possible choice of arm I, € {1,..., K} at
time t, one receives the reward

Xe = Xi, ¢t

where, forany 1 << K and s > 1, X;s ~ vj, and
the (Xis)is are independent.

Reward distributions v; € F; parametric family, or not. Examples:
canonical exponential family, general bounded
rewards

Example Bernoulli rewards: @ € [0,1]X, v; = B(6))
Strategy The agent’'s actions follow a dynamical strategy
m = (m1,m2,...) such that

Iy = 7Tt(X17 cees Xt—l)

b
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Multi-armed Bandit Problems =~ The Bandit Model

The Multi-armed Bandit Game (cont'd)

Goal: Choose 7 so as to maximize

n K
EA[S) =Y > E[EXI{ = i}|X1,..., Xe1]]

t=1 i=1
K

=Y wE[Tis]
i=1

where T; , = >, I{l = i} is the number of draws of arm i up to
time n, and p; = E(v;).

I
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Multi-armed Bandit Problems =~ The Bandit Model

The Multi-armed Bandit Game (cont'd)

Goal: Choose 7 so as to maximize

n K
EA[S) =Y > E[EXI{ = i}|X1,..., Xe1]]

t=1 i=1
K

=Y wE[Tis]
i=1

where T; , = >, I{lt = i} is the number of draws of arm i up to
time n, and p; = E(v;).
—> Equivalent to minimizing the regret

]

Rn(A) = _:TaXK]E[iXi,t} - E[ixlt,t}
t=1 t—1

-?“} where p* € max{u;: 1 <i < K}.
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Multi-armed Bandit Problems The Bandit Model

The Exploration—Exploitation Lemma

Problem 1: The environment does not reveal the rewards of the arms
not pulled by the learner
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Multi-armed Bandit Problems The Bandit Model

The Exploration—Exploitation Lemma

Problem 1: The environment does not reveal the rewards of the arms
not pulled by the learner
= the learner should gain information by repeatedly pulling all the arms
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Multi-armed Bandit Problems =~ The Bandit Model

The Exploration—Exploitation Lemma

Problem 1: The environment does not reveal the rewards of the arms

not pulled by the learner
= the learner should gain information by repeatedly pulling all the arms

Problem 2: Whenever the learner pulls a bad arm, it suffers some regret
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Multi-armed Bandit Problems =~ The Bandit Model

The Exploration—Exploitation Lemma

Problem 1: The environment does not reveal the rewards of the arms
not pulled by the learner
= the learner should gain information by repeatedly pulling all the arms

Problem 2: Whenever the learner pulls a bad arm, it suffers some regret
= the learner should reduce the regret by repeatedly pulling the best arm
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Multi-armed Bandit Problems =~ The Bandit Model

The Exploration—Exploitation Lemma

Problem 1: The environment does not reveal the rewards of the arms
not pulled by the learner
= the learner should gain information by repeatedly pulling all the arms

Problem 2: Whenever the learner pulls a bad arm, it suffers some regret
= the learner should reduce the regret by repeatedly pulling the best arm

Challenge: The learner should solve two opposite problems!
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Multi-armed Bandit Problems =~ The Bandit Model

The Exploration—Exploitation Lemma

Problem 1: The environment does not reveal the rewards of the arms
not pulled by the learner

= the learner should gain information by repeatedly pulling all the arms
= exploration

Problem 2: Whenever the learner pulls a bad arm, it suffers some regret
= the learner should reduce the regret by repeatedly pulling the best arm

Challenge: The learner should solve two opposite problems!
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Multi-armed Bandit Problems =~ The Bandit Model

The Exploration—Exploitation Lemma

Problem 1: The environment does not reveal the rewards of the arms
not pulled by the learner

= the learner should gain information by repeatedly pulling all the arms
= exploration

Problem 2: Whenever the learner pulls a bad arm, it suffers some regret
= the learner should reduce the regret by repeatedly pulling the best arm
= exploitation

Challenge: The learner should solve two opposite problems!
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Multi-armed Bandit Problems =~ The Bandit Model

The Exploration—Exploitation Lemma

Problem 1: The environment does not reveal the rewards of the arms
not pulled by the learner

= the learner should gain information by repeatedly pulling all the arms
= exploration

Problem 2: Whenever the learner pulls a bad arm, it suffers some regret
= the learner should reduce the regret by repeatedly pulling the best arm
= exploitation

Challenge: The learner should solve the exploration-exploitation
dilemmal
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Multi-armed Bandit Problems The Bandit Model

The Multi-armed Bandit Game (cont'd)

Examples
» Packet routing
» Clinical trials
> Web advertising
» Computer games
» Resource mining

> ...

A. LAZARIC — Introduction to Reinforcement Learning
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Multi-armed Bandit Problems =~ The Bandit Model

The Stochastic Multi—-armed Bandit Problem

The environment is stochastic

» Each arm has a distribution v; bounded in [0, 1] and
characterized by an expected value p;

» The rewards are i.i.d. Xj¢ ~ v; (as in the MDP model)

A. LAZARIC — Introduction to Reinforcement Learning Sept 14th, 2015 - 51/124



Multi-armed Bandit Problems The Bandit Model

The Stochastic Multi—-armed Bandit Problem (cont'd)

Notation
» Number of times arm i has been pulled after n rounds

n

Tin=> =i}

t=1

A. LAZARIC — Introduction to Reinforcement Learning Sept 14th, 2015 - 52/124



Multi-armed Bandit Problems The Bandit Model

The Stochastic Multi—-armed Bandit Problem (cont'd)

Notation

» Number of times arm i has been pulled after n rounds

ln = ZH{/t = ’}
t=1

> Regret
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Multi-armed Bandit Problems The Bandit Model

The Stochastic Multi—-armed Bandit Problem (cont'd)

Notation

» Number of times arm i has been pulled after n rounds

Tin= Z]I{lt =i}
t=1

> Regret

Rn(A) = _max (nui) [ZX/h ]
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Multi-armed Bandit Problems The Bandit Model

The Stochastic Multi—-armed Bandit Problem (cont'd)

Notation

» Number of times arm i has been pulled after n rounds

Tin=> Ll=1i}
t=1

> Regret

R.(A) = _max ZE[T, nl i
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Multi-armed Bandit Problems The Bandit Model

The Stochastic Multi—-armed Bandit Problem (cont'd)

Notation

» Number of times arm i has been pulled after n rounds
Tin=> Ll=1i}
=1

> Regret

K
Rn(A) = Npj= — ZE[Ti,n]Mi
i=1
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Multi-armed Bandit Problems The Bandit Model

The Stochastic Multi—-armed Bandit Problem (cont'd)

Notation

» Number of times arm i has been pulled after n rounds

Ton= "Ik = 1}
t=1

> Regret

= E[Tinl (i — 1)

i
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Multi-armed Bandit Problems The Bandit Model

The Stochastic Multi—-armed Bandit Problem (cont'd)

Notation

» Number of times arm i has been pulled after n rounds

Ton= "Ik = 1}
t=1

> Regret
Ra(A) =D E[T;A]A
i£i*
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Multi-armed Bandit Problems The Bandit Model

The Stochastic Multi—-armed Bandit Problem (cont'd)

Notation

» Number of times arm i has been pulled after n rounds

IH_Z]I{II’_I}
t=1

> Regret
Ra(A) =D E[T;AlA
i#i*
> Gap Aj = pjr — pi

il
.L

2"‘ 0 :;:% A. LAZARIC — Introduction to Reinforcement Learning Sept 14th, 2015 - 52/124




Multi-armed Bandit Problems The Bandit Model

The Stochastic Multi—-armed Bandit Problem (cont'd)

Ra(A) = E[T; a4,
i#i*
=- we only need to study the expected number of pulls of the
suboptimal arms
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Multi-armed Bandit Problems Bandit Algorithms: UCB

Outline

Motivation

Multi-armed Bandit Problems
Introduction
The Bandit Model
Bandit Algorithms: UCB
A (distribution-dependent) Lower Bound for the Regret
Worst-case Performance

Extensions
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Multi-armed Bandit Problems Bandit Algorithms: UCB

The Stochastic Multi—-armed Bandit Problem (cont'd)

Optimism in Face of Uncertainty Learning (OFUL)

Whenever we are uncertain about the outcome of an arm, we
consider the best possible world and choose the best arm.
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Multi-armed Bandit Problems Bandit Algorithms: UCB

The Stochastic Multi—-armed Bandit Problem (cont'd)

Optimism in Face of Uncertainty Learning (OFUL)

Whenever we are uncertain about the outcome of an arm, we
consider the best possible world and choose the best arm.

Why it works:
> If the best possible world is correct = no regret
> If the best possible world is wrong = the reduction in the
uncertainty is maximized

A
<%
LYy
yJ.L(r "
L.. .. "'.
. 2";"4%*}% A. LAZARIC — Introduction to Reinforcement Learning Sept 14th, 2015 - 55,



Multi-armed Bandit Problems Bandit Algorithms: UCB

The Stochastic Multi—-armed Bandit Problem (cont'd)

2 6 -4 -2 4 6
Rewards Rewards
pulls = 100 pulls = 200
1
12| 2.5]
10
2|
8
1.5]
6
1]
.
2| 0.5]
-4 -2 0 2 4 6 9A -2 0 2 4 6
Rewards Rewards
pulls = 50 pulls = 20
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Multi-armed Bandit Problems Bandit Algorithms: UCB

The Stochastic Multi—-armed Bandit Problem (cont'd)

Optimism in face of uncertainty

o 2
Rewards

0.5

0 2 o
Rewards Rewards
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Multi-armed Bandit Problems Bandit Algorithms: UCB

The Upper—Confidence Bound (UCB) Algorithm
The idea

1.5F

. } %

Reward

1 (io) 2 (‘73) 3 ‘(3) 4 (‘23)
Arms
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Multi-armed Bandit Problems Bandit Algorithms: UCB

The Upper—Confidence Bound (UCB) Algorithm

Show time!

A. LAZARIC — Introduction to Reinforcement Learning Sept 14th, 2015 -



Multi-armed Bandit Problems Bandit Algorithms: UCB

The Upper—Confidence Bound (UCB) Algorithm (cont'd)

At eachround t=1,...,n

» Compute the score of each arm i
B; = (optimistic score of arm i)

» Pull arm

It =arg max Bjs:
i=1,...,

» Update the number of pulls T}, ; = T}, —1 + 1 and the other
statistics

2
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Multi-armed Bandit Problems Bandit Algorithms: UCB

The Upper—Confidence Bound (UCB) Algorithm (cont'd)

The score (with parameters p and ¢)

B; = (optimistic score of arm i)

A. LAZARIC — Introduction to Reinforcement Learning Sept 14th, 2015 -



Multi-armed Bandit Problems Bandit Algorithms: UCB

The Upper—Confidence Bound (UCB) Algorithm (cont'd)

The score (with parameters p and ¢)

Bi s.+ = (optimistic score of arm i if pulled s times up to round t)

A. LAZARIC — Introduction to Reinforcement Learning Sept 14th, 2015 - 61/124



Multi-armed Bandit Problems Bandit Algorithms: UCB

The Upper—Confidence Bound (UCB) Algorithm (cont'd)

The score (with parameters p and ¢)

Bi s+ = (optimistic score of arm i if pulled s times up to round t)

Optimism in face of uncertainty:
Current knowledge: average rewards fi; s
Current uncertainty: number of pulls s

b
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Multi-armed Bandit Problems Bandit Algorithms: UCB

The Upper—Confidence Bound (UCB) Algorithm (cont'd)

The score (with parameters p and ¢)

Bis: = knowledge + uncertainty

optimism
Optimism in face of uncertainty:

Current knowledge: average rewards fi; s
Current uncertainty: number of pulls s

b
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Multi-armed Bandit Problems Bandit Algorithms: UCB

The Upper—Confidence Bound (UCB) Algorithm (cont'd)

The score (with parameters p and ¢)

log1/6
2s

Bi,s,t = ,L\Li,s +p
Optimism in face of uncertainty:

Current knowledge: average rewards [i; s
Current uncertainty: number of pulls s

2
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Multi-armed Bandit Problems Bandit Algorithms: UCB

The Upper—Confidence Bound (UCB) Algorithm (cont'd)

At eachround t=1,...,n

» Compute the score of each arm i

log(t)
2T,

Bit= i1, +

» Pull arm
It =arg max B;;
i=1,..K

=1,...,

» Update the number of pulls 7), ; = T}, ;—1 + 1 and ﬂ,;T,.’t

o0
...Q:OEO
. a ) :- o A. LAZARIC — Introduction to Reinforcement Learning Sept 14th, 2015 - 62/124




Multi-armed Bandit Problems Bandit Algorithms: UCB

The Upper—Confidence Bound (UCB) Algorithm (cont'd)

Let Xq,...,X, be i.i.d. samples from a distribution bounded in
[a, b], then for any § € (0,1)

P[‘%ZH:Xt —E[Xl]’ > (b— a) '°g2,27/5] <§
t=1
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Multi-armed Bandit Problems Bandit Algorithms: UCB

The Upper—Confidence Bound (UCB) Algorithm (cont'd)

After s pulls, arm i

P
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Multi-armed Bandit Problems Bandit Algorithms: UCB

The Upper—Confidence Bound (UCB) Algorithm (cont'd)

After s pulls, arm j

P >1-9

wi < flis +

log1/6
2s
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Multi-armed Bandit Problems Bandit Algorithms: UCB

The Upper—Confidence Bound (UCB) Algorithm (cont'd)

After s pulls, arm f

P >1-96

wi < fljs + 5

Iogl/é]

= UCB uses an upper confidence bound on the expectation
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Multi-armed Bandit Problems Bandit Algorithms: UCB

The Upper—Confidence Bound (UCB) Algorithm (cont'd)

For any set of K arms with distributions bounded in [0, b], if
d = 1/t, then UCB(p) with p > 1, achieves a regret

2
Ra(A) < Z [Zi_plog(n) + A <g + 2(p1_ 1))]
i#i* !
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Multi-armed Bandit Problems Bandit Algorithms: UCB

The Upper—Confidence Bound (UCB) Algorithm (cont'd)

Let K =2 with i* =1

Ra(A) < o(iplog(ro)

Remark 1: the cumulative regret slowly increases as log(n)
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Multi-armed Bandit Problems Bandit Algorithms: UCB

The Upper—Confidence Bound (UCB) Algorithm (cont'd)

Let K =2 with i* =1

Ra(A) < o(iplog(ro)

Remark 1: the cumulative regret slowly increases as log(n)
Remark 2: the smaller the gap the bigger the regret... why?

o0
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Multi-armed Bandit Problems Bandit Algorithms: UCB

The Upper—Confidence Bound (UCB) Algorithm (cont'd)

Show time (again)!
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Multi-armed Bandit Problems A (distribution-dependent) Lower Bound for the Regret

Outline

Motivation

Multi-armed Bandit Problems
Introduction
The Bandit Model
Bandit Algorithms: UCB
A (distribution-dependent) Lower Bound for the Regret
Worst-case Performance

Extensions

A. LAZARIC — Introduction to Reinforcement Learning Sept 14th, 2015 - 68/



Multi-armed Bandit Problems A (distribution-dependent) Lower Bound for the Regret

Asymptotically Optimal Strategies

» A strategy 7 is said to be consistent if, for any (v;); € FK,
1 *
» The strategy is efficient if for all § € [0,1]¥ and all a > 0,

R.(A) = o(n®)

» There are efficient strategies and we consider the best
achievable asymptotic performance among efficient strategies

o0
.'.:. é‘-".
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Multi-armed Bandit Problems A (distribution-dependent) Lower Bound for the Regret

The Bound of Lai and Robbins

One-parameter reward distribution v; = vp,,0; € © C R .

Theorem [Lai and Robbins, '85]

If 7w is an efficient strategy, then, for any 0 € oK,

liminf (A S W
n—oo log(n) — . KL(vj, v*)

where KL(v, V') denotes the Kullback-Leibler divergence
For example, in the Bernoulli case:

KL(B(p), B(q)) = dun(p,q) = plogg +(1—p)log 1 P
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Multi-armed Bandit Problems A (distribution-dependent) Lower Bound for the Regret

The Bound of Burnetas and Katehakis

More general reward distributions v; € F;

Theorem [Burnetas and Katehakis, '96]

If 7 is an efficient strategy, then, for any 6 € [0, 1]K,

fminf " e U
n—oo log(n) — | Kinf (viy 11*)
i <p H

1
2

where

Kinf(vi, u*) = inf {K(y,-, V)
V' e Fi, E(V) > p*}

ua\_/

Kinf(va, 1*)
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Multi-armed Bandit Problems A (distribution-dependent) Lower Bound for the Regret

Intuition

> First assume that p* is known and that n is fixed

» How many draws n; of v; are necessary to know that p; < p*
with probability at least 1 — 1/n?

> Test: Hy: pj = p* against Hy : v =

» Stein's Lemma: if the first type error ap, < 1/n, then

B 7 exp (= niKine(vi, 1¥))
— it can be smaller than 1/n if

log(n)

ng > —————
I inf (Vi, 1)

» How to do as well without knowing p* and n in advance? Not
«2¢ asymptotically?
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Multi-armed Bandit Problems Worst-case Performance
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Multi-armed Bandit Problems Worst-case Performance

The Worst—case Performance

Remark: the regret bound is distribution—dependent

Ry(A; A) < O (ip Iog(n))
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Multi-armed Bandit Problems Worst-case Performance

The Worst—case Performance

Remark: the regret bound is distribution—dependent

Ry(A; A) < O (ip Iog(n))

Meaning: the algorithm is able to adapt to the specific problem at
hand!
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Multi-armed Bandit Problems ~ Worst-case Performance

The Worst—case Performance

Remark: the regret bound is distribution—dependent

Rn(A; A) < O (ip Iog(n))

Meaning: the algorithm is able to adapt to the specific problem at

hand!

Worst—case performance: what is the distribution which leads to
the worst possible performance of UCB? what is the
distribution—free performance of UCB?

Ra(A) = szp Rn(A; A)

Sept 14th, 2015 - 74/124
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Multi-armed Bandit Problems Worst-case Performance

The Worst—case Performance

Problem: it seems like if A — 0 then the regret tends to infinity...
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Multi-armed Bandit Problems Worst-case Performance

The Worst—case Performance

Problem: it seems like if A — 0 then the regret tends to infinity...
. nosense because the regret is defined as

Ra(A; A) = E[To,]A
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Multi-armed Bandit Problems Worst-case Performance

The Worst—case Performance

Problem: it seems like if A — 0 then the regret tends to infinity...
. nosense because the regret is defined as

Ra(A; A) = E[To,]A

then if A; is small, the regret is also small...
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Multi-armed Bandit Problems Worst-case Performance

The Worst—case Performance

Problem: it seems like if A — 0 then the regret tends to infinity...
. nosense because the regret is defined as

Ra(A; A) = E[To,]A

then if A; is small, the regret is also small...
In fact

Rn(A; A) = min {O(iplog(n)) ,E[Tgm]A}
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Multi-armed Bandit Problems Worst-case Performance

The Worst—case Performance

Then
Ra(A) = sup Rn(A; A) = sup min {O(lplog(n)> , nA} ~+/n
A A A

for A =+/1/n.

Remark: Non-stochastic bandits: it is possible to ensure the
same O(y/n) regret even without any stochastic asumption on the
reward process.
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Multi-armed Bandit Problems Worst-case Performance

Tuning the confidence 6 of UCB

Remark: UCB is an anytime algorithm (6 = 1/t)

R log t
Bi,s,t = ljs+p 2gs

A. LAZARIC — Introduction to Reinforcement Learning
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Multi-armed Bandit Problems Worst-case Performance

Tuning the confidence 6 of UCB

Remark: UCB is an anytime algorithm (6 = 1/t)

R log t
Bi,s,t = ljs+p 2gs
Remark: If the time horizon n is known then the optimal choice is
d=1/n
. log n
Bi,s,t = jlis+p 2%

A. LAZARIC — Introduction to Reinforcement Learning Sept 14th, 2015 - 77/124



Multi-armed Bandit Problems Worst-case Performance

Tuning the confidence § of UCB (cont'd)

Intuition: UCB should pull the suboptimal arms
> Enough: so as to understand which arm is the best

» Not too much: so as to keep the regret as small as possible
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Multi-armed Bandit Problems Worst-case Performance

Tuning the confidence § of UCB (cont'd)

Intuition: UCB should pull the suboptimal arms

> Enough: so as to understand which arm is the best

» Not too much: so as to keep the regret as small as possible
The confidence 1 — § has the following impact (similar for p)

> Big 1 —§: high level of exploration

» Small 1 — 0: high level of exploitation
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Multi-armed Bandit Problems Worst-case Performance

Tuning the confidence § of UCB (cont'd)

Intuition: UCB should pull the suboptimal arms

> Enough: so as to understand which arm is the best

» Not too much: so as to keep the regret as small as possible
The confidence 1 — § has the following impact (similar for p)

> Big 1 —§: high level of exploration

» Small 1 — 0: high level of exploitation

Solution: depending on the time horizon, we can tune how to
trade-off between exploration and exploitation

o

e
]
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Multi-armed Bandit Problems Worst-case Performance

UCB Proof

Let's dig into the (1 page and half!!) proof.

Define the (high-probability) event [statistics]

g_{v,-vs S,/'OgW}
2s

By Chernoff-Hoeffding P[] > 1 — nK3§.

ﬁi,s —

A. LAZARIC — Introduction to Reinforcement Learning
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Multi-armed Bandit Problems Worst-case Performance

UCB Proof

Let's dig into the (1 page and half!!) proof.

Define the (high-probability) event [statistics]

5:{\,,-,5 S,/'Oglﬁ}
2s

By Chernoff-Hoeffding P[] > 1 — nK?é.
At time t we pull arm i [algorithm]

ﬂi,s — K

Bi,Ti,t—1 > Bi*1Ti*,t—1

A. LAZARIC — Introduction to Reinforcement Learning
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Multi-armed Bandit Problems Worst-case Performance

UCB Proof

Let's dig into the (1 page and half!!) proof.

Define the (high-probability) event [statistics]

g_{ws . /|og1/a}
2s

By Chernoff-Hoeffding P[€] > 1 — nK34.
At time t we pull arm i [algorithm]

N logl/6 _ . log1/6
- > N T _e/7
:LL’,T:,t—l + 27—/,[’—1 ZH T ,t—1 + 27—/*,[’—1

ﬁi,s — M
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Multi-armed Bandit Problems Worst-case Performance

UCB Proof

Let's dig into the (1 page and half!l) proof.

Define the (high-probability) event [statistics]

5:{%_75 < Iogl/&}
2s

By Chernoff-Hoeffding P[] > 1 — nK?é.
At time t we pull arm i [algorithm]

~

Mis — Hi

N logl/6 _ . [ log1/§
[ . > "* Sk M~ —_
/'l’l,T:,t—l + 27—i,t—1 ZH T ,t—1 + 2','[_*71’_1

On the event £ we have [math]

A
<%
¢5".":'.§.=§z3.
. 3";"4 :'ﬁ::% A. LAZARIC — Introduction to Reinforcement Learning
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Multi-armed Bandit Problems Worst-case Performance

UCB Proof (cont'd)

Assume t is the last time i is pulled, then T; , = T;:_1 + 1, thus

i+ 2

A. LAZARIC — Introduction to Reinforcement Learning Sept 14th, 2015



Multi-armed Bandit Problems Worst-case Performance

UCB Proof (cont'd)

Assume t is the last time i is pulled, then T; , = T;:_1 + 1, thus

logl/é
i+ 2T, -1~
Reordering [math]
log1/6
Tin < 1
=7t

under event £ and thus with probability 1 — nKJ.
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Multi-armed Bandit Problems Worst-case Performance

UCB Proof (cont'd)

Assume t is the last time i is pulled, then T; , = T; ;1 + 1, thus
logl/é
ST TE A

Reordering [math]

log1/6

202
under event £ and thus with probability 1 — nKJ.
Moving to the expectation [statistics|

+1

Tin <

E[T;,] = E[T; ,I€] + E[T; ,IEC]
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Multi-armed Bandit Problems Worst-case Performance

UCB Proof (cont'd)

Assume t is the last time i is pulled, then T; , = T; ;1 + 1, thus
logl/é
ST TE A

Reordering [math]

log1/6

202
under event £ and thus with probability 1 — nKJ.
Moving to the expectation [statistics|

+1

Tin <

log1/6
202

E[T:n] < + 1+ n(nK9)
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Multi-armed Bandit Problems Worst-case Performance

UCB Proof (cont'd)

Assume t is the last time i is pulled, then T; , = T; ;1 + 1, thus
logl/é
ST TE A

Reordering [math]

log1/6

202
under event £ and thus with probability 1 — nKJ.
Moving to the expectation [statistics|

+1

Tin <

log1/6
2A?
Trading-off the two terms § = 1/n?, we obtain

E[T:n] < + 1+ n(nK9)

. n 2logn
IU”aTi,t—l 27—i7t—1
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Multi-armed Bandit Problems Worst-case Performance

UCB Proof (cont'd)

Trading-off the two terms § = 1/n?, we obtain

i, Tie s +

and

log n
E[T;,] < Agg +1+K

A. LAZARIC — Introduction to Reinforcement Learning
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Multi-armed Bandit Problems Worst-case Performance

Tuning the confidence § of UCB (cont'd)

Multi-armed Bandit: the same for § =1/t and § =1/n...
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Multi-armed Bandit Problems Worst-case Performance

Tuning the confidence § of UCB (cont'd)

Multi-armed Bandit: the same for § =1/t and § =1/n...
. almost (i.e., in expectation)
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Multi-armed Bandit Problems Worst-case Performance

Tuning the confidence § of UCB (cont'd)

The value—at—risk of the regret for UCB-anytime

Frequency
3000 4000

2000

1000
1

r T T T 1
0 1000 2000 3000 4000

Regret
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Multi-armed Bandit Problems ~ Worst-case Performance

Tuning the p of UCB (cont'd)

UCB values (for the 6 = 1/n algorithm)

log n

Bi,s = ﬁi,s +p

2s

¥
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Multi-armed Bandit Problems Worst-case Performance

Tuning the p of UCB (cont'd)

UCB values (for the 6 = 1/n algorithm)

log n
2s

Bi,s = ﬁ'i,s +p
Theory
> p < 0.5, polynomial regret w.r.t. n
> p > 0.5, logarithmic regret w.r.t. n

A. LAZARIC — Introduction to Reinforcement Learning
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Multi-armed Bandit Problems Worst-case Performance

Tuning the p of UCB (cont'd)

UCB values (for the 6 = 1/n algorithm)

log n
2s

Bi,s = ﬁi,s +p

Theory
> p < 0.5, polynomial regret w.r.t. n

> p > 0.5, logarithmic regret w.r.t. n

Practice: p = 0.2 is often the best choice

A. LAZARIC — Introduction to Reinforcement Learning
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Multi-armed Bandit Problems Worst-case Performance

Tuning the p of UCB (cont'd)

UCB values (for the 6 = 1/n algorithm)

log n
Bis = flis+p
2s
Theory
> p < 0.5, polynomial regret w.r.t. n
> p > 0.5, logarithmic regret w.r.t. n
Practice: p = 0.2 is often the best choice
Regret of UCB1(p) for n = 1000 and K = 3 arms: Regret of UCB1(p) for n = 1000 and K = 5 arms:
o Ber(0.6), Ber(0.5) gd Ber(0.5) Ber(0.7), Ber(0.6), Ber(0.5), Ber(0.4) and Ber(0.3)
45 : s H
I
40 1 - 0
S
£l £
E 30 E =
o 2 o
g % 40
g2 2
< R
10 2w
5 10
0.0 02 04 06 08 10 12 14 16 18 20 ﬂO 02 04 06 08 1.0 12 14 16 18 2.0

Exploration parameter p Exploration parameter p
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Multi-armed Bandit Problems Worst-case Performance

Improvements: UCB-V

Idea: use empirical Bernstein bounds for more accurate c.i.
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Multi-armed Bandit Problems Worst-case Performance

Improvements: UCB-V

Idea: use empirical Bernstein bounds for more accurate c.i.

Algorithm
» Compute the score of each arm i

log(t)
2T+

Bie=fii7. +p

» Pull arm

Iy =arg max B,
i=1,...,K

yeeny

» Update the number of pulls T}, ¢, fi; T,

=3

5
o o o

'S
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Multi-armed Bandit Problems Worst-case Performance

Improvements: UCB-V

Idea: use empirical Bernstein bounds for more accurate c.i.

Algorithm
» Compute the score of each arm i

8logt
3T

Bie = fii,7, +

> Pull arm
Iy =arg max B,
i=1,...,.K

yeeny

» Update the number of pulls T}, ;, fi; 7,, and 6,.2_’T’_<t
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Multi-armed Bandit Problems Worst-case Performance

Improvements: UCB-V

Idea: use empirical Bernstein bounds for more accurate c.i.
Algorithm

» Compute the score of each arm i

52
2(f,.$T’_,t log t
Ti

8logt
3Ti

Bit=furT, +

» Pull arm
Iy =arg max B;;
i=1,....K

I=1,...

> Update the number of pulls T}, ¢, fi;, T,

)
. and 0T,

Regret
R, < O(% log n)

I
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Multi-armed Bandit Problems Worst-case Performance

Improvements: UCB-V

Idea: use empirical Bernstein bounds for more accurate c.i.

Algorithm
» Compute the score of each arm i

Bi: = fiiT,, + 8;;_%:
> Pull arm
Iy = arg i:TE).(,K B
» Update the number of pulls T}, ., fi;,7,, and 67
Regret

2

R, < O(UK log n)

A. LAZARIC — Introduction to Reinforcement Learning
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Multi-armed Bandit Problems Worst-case Performance

Improvements: KL-UCB

Idea: use even tighter c.i. based on Kullback—Leibler divergence

1-p
1-gq

p
d(p,q) = ploga + (1~ p)log
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Multi-armed Bandit Problems Worst-case Performance

Improvements: KL-UCB

Idea: use even tighter c.i. based on Kullback—Leibler divergence

1-p
1-gq

p
d(p,q) = ploga + (1~ p)log

Algorithm: Compute the score of each arm i (convex optimization)

Bi., = max {q €[0,1] : Tied(fii7,., q) < log(t) + clog(log(t))}
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Multi-armed Bandit Problems Worst-case Performance

Improvements: KL-UCB

Idea: use even tighter c.i. based on Kullback—Leibler divergence

1-p
1-gq

p
d(p,q) = plog i (1—p)log
Algorithm: Compute the score of each arm i (convex optimization)
B = max {q € [0,1]: Ty.cd(fi1,,, q) < log(t) + clog(log(t))}

Regret: pulls to suboptimal arms

log(n)
T+ G log(log(n)) + —55

]E[T,'J,] S (]. =+ E)

where d(p;, u*) > 2A?

o

.‘“:':‘.gz?.
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Multi-armed Bandit Problems Worst-case Performance

Improvements: Thompson strategy

Idea: Use a Bayesian approach to estimate the means {y;};
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Multi-armed Bandit Problems Worst-case Performance

Improvements: Thompson strategy

Idea: Use a Bayesian approach to estimate the means {y;};

Algorithm: Assuming Bernoulli arms and a Beta prior on the mean

» Compute
Di+=Beta(S;:+1,Fi:+1)

» Draw a mean sample as
Mt~ Di,t
» Pull arm
Iy = argmax fi; ¢

> If Xj,+ =1update S, 11 = S,+ + 1, else update Fj, 11 = Fj, ¢+ +1

Regret:
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Multi-armed Bandit Problems ~ Worst-case Performance

How to efficiently explore an MDP

The Exploration-Exploitation
Dilemma

Contextual Linear Bandit
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Multi-armed Bandit Problems Worst-case Performance

The Contextual Linear Bandit Problem

Motivating Examples
» Different users may have different preferences
» The set of available news may change over time
» We want to minimise the regret w.r.t. the best news for each

user

Sept 14th, 2015 - 89/124
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Multi-armed Bandit Problems ~ Worst-case Performance

The Contextual Linear Bandit Problem

The problem: at each timet=1,...,n

» User u; arrives and a set of news A; is provided

» The user u; together with a news a € A; are described by a
feature vector x; ,

» The learner chooses a news a; and receives a reward r; ,,

The optimal news: at each time t = 1,..., n, the optimal news is
*
a; = argmaxE|[r
t gaeAt [r2,a]

The regret:

Ro— B[ reot| [ 3 rea]
t=1

Sept 14th, 2015 - 9
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Multi-armed Bandit Problems Worst-case Performance

The Contextual Linear Bandit Problem

The linear assumption: the reward is a linear combination
between the context and an unknown parameter vector

Elre.alxe,a] = X; 10

D=3

5
o o o

3

'S
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Multi-armed Bandit Problems Worst-case Performance

The Contextual Linear Bandit Problem

The linear regression estimate:
» To={t:a = a}
» Construct the design matrix of all the contexts observed when
action a has been taken D, € RI7alxd

» Construct the reward vector of all the rewards observed when
action a has been taken ¢, € RI7|

» Estimate 6, as

0,=(DID,+ND]c,
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Multi-armed Bandit Problems Worst-case Performance

The Contextual Linear Bandit Problem

Optimism in face of uncertainty: the LinUCB algorithm

» Chernoff-Hoeffding in this case becomes

‘Xt—[—aéa - E[rt7a|xt’a” S a\/X;,ra(DaTDa + I)ilxt,a

> and the UCB strategy is

a; = arg max Xe 202 + /) x! (DT Dy + 1) 1x;
ae t I )
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Multi-armed Bandit Problems Worst-case Performance

The Contextual Linear Bandit Problem

The evaluation problem
» Online evaluation: too expensive

» Offline evaluation: how to use the logged data?

A. LAZARIC — Introduction to Reinforcement Learning
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Multi-armed Bandit Problems Worst-case Performance

The Contextual Linear Bandit Problem

Evaluation from logged data

» Assumption 1: contexts and rewards are i.i.d. from a
stationary distribution

(X1, s XK My 1) ~ D

» Assumption 2: the logging strategy is random
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Multi-armed Bandit Problems ~ Worst-case Performance

The Contextual Linear Bandit Problem

Evaluation from logged data: given a bandit strategy 7, a
desired number of samples T, and a (infinite) stream of data

Algorithm 3 Policy_Evaluator.

: Inputs: T' > 0; policy ; stream of events
ho < (0 {An initially empty history}
Ry < 0 {An initially zero total payoff}
fort=1,2,3,...,Tdo
repeat
Get next event (X1, ..., Xk, a,Ta)
until 7(hi—1, (X1,...,XK)) = a
ht <~ CONCATENATE(h¢—1, (X1, ..., XK, Q,Tq))
Ri < Ri—1+ 7,
end for
Output: Rr /T

SORXIDINR LY 2O

[u—
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Extensions

Outline

Motivation
Multi-armed Bandit Problems

Extensions
Some Examples
Best Arm Identification
Exploration with Probabilistic Expert Advice
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Outline

Motivation
Multi-armed Bandit Problems

Extensions
Some Examples
Best Arm Identification
Exploration with Probabilistic Expert Advice
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Extensions Some Examples

Non-stationary Bandits

» Changepoint : reward
distributions change abruptly

» Goal : follow the best arm

» Application : scanning
tunnelling microscope

» Variants D-UCB et SW-UCB including a progressive discount
of the past

» Bounds O(y/nlog n) are proved, which is (almost) optimal
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Extensions Some Examples

Generalized Linear Bandits

v

Bandit with contextual information:
E[X¢|le] = p(mj,04)

where 0, € R? is an unkown parameter and ;1 : R — R is a
link function

» Example : binary rewards
_exp(x)
M(X) - 1 + exp(x)

» Application : targeted web ads

» GLM-UCB : regret bound depending on dimension d and not
on the number of arms
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Extensions Some Examples

Stochastic Optimization

16

14

» Goal : Find the maximum of a
function f : Cc R - R .
(possibly) observed in noise :

» Application : DAS

res$x
» Model : f is the realization of a Gaussian Process (or has a
small norm in some RKHS)

GP-UCB : evaluate f at the point x € C where the confidence
interval for f(x) has the highest upper-bound
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Extensions Best Arm Identification

Outline

Motivation
Multi-armed Bandit Problems

Extensions
Some Examples
Best Arm Identification
Exploration with Probabilistic Expert Advice
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Extensions Best Arm Identification

Motivation
Visitor for testing 8
Website version A Website version B
’ Page Title ‘ ‘ Page Title ‘
News Buy it * News Content
Content Buy it *
10 Conversions 5 Conversions
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Extensions Best Arm Identification

Goal # regret minimization

Improve performance:

=» fixed number of test users — > smaller probability of error

=» fixed probability of error — > fewer test users

Tools: sequential allocation and stopping
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Extensions Best Arm Identification

The model

A two-armed bandit model is
» aset v = (v1,112) of two probability distributions ('arms’) with
respective means p; and up
» a* = argmax, p, is the (unknown) best am

To find the best arm, an agent interacts with the bandit model
with
» a sampling rule (A¢)ten where Ay € {1,2} is the arm chosen
at time t (based on past observations) — > a sample
Z; ~ Vg, is observed
> a stopping rule T indicating when he stops sampling the arms
» a recommendation rule 3, € {1,2} indicating which arm he
thinks is best (at the end of the interaction)

R In classical A/B Testing, the sampling rule A; is uniform on
e 1,2} and the stopping rule 7 = t is fixed in advance.
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Extensions Best Arm Identification

Two possible goals
The agent's goal is to design a strategy A = ((A¢), 7, 3-) satisfying

Fixed-budget setting Fixed-confidence setting
T=t P,(a; # a*) <o
pt(v) =P, (3 # a*) as small E,[r] as small
as possible as possible

An algorithm using uniform sampling is

Fixed-budget setting Fixed-confidence setting
a classical test of a sequential test of
(11 > p2) against (u1 < p2) | (11 > p2) against (p1 < pi2)
based on t samples with probability of error
uniformly bounded by §

Siegmund 85]: sequential tests can save samples !
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Extensions Exploration with Probabilistic Expert Advice

Outline
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Extensions Exploration with Probabilistic Expert Advice

The model

Optimal Discovery with Probabilistic Expert Advice: Finite Time
Analysis and Macroscopic Optimality, JMLR 2013
joint work with S. Bubeck and D. Ernst

» Subset A C X of
important items

» X > 1, Al < |X|

» Access to X only by
probabilistic experts
(Pi)i<i<k:
sequential
independent draws
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The model

Extensions Exploration with Probabilistic Expert Advice

Optimal Discovery with Probabilistic Expert Advice: Finite Time
Analysis and Macroscopic Optimality, JMLR 2013
joint work with S. Bubeck and D. Ernst

» Subset A C X of
important items

» X > 1, Al < |X|

» Access to X only by
probabilistic experts
(Pi)i<i<k:
sequential
independent draws
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Extensions Exploration with Probabilistic Expert Advice

The model

Optimal Discovery with Probabilistic Expert Advice: Finite Time
Analysis and Macroscopic Optimality, JMLR 2013
joint work with S. Bubeck and D. Ernst

» Subset A C X of
important items

» X > 1, A < | X

> Access to X only by
probabilistic experts
(Pi)i<i<k:
sequential
independent draws
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Extensions Exploration with Probabilistic Expert Advice

The model

Optimal Discovery with Probabilistic Expert Advice: Finite Time
Analysis and Macroscopic Optimality, JMLR 2013
joint work with S. Bubeck and D. Ernst

» Subset A C X of

important items Exper o
(o O \ <> <&
> X[ > 1, Al < | X ; \<>‘><> RPN
» Access to X only by < <§>~3—2>—"—'<>‘/<><> <<>> O
probabilistic experts O o OO\QQ o o

(Pi)i<i<k:
sequential
independent draws
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Extensions Exploration with Probabilistic Expert Advice

Optimal Exploration with Probabilistic Expert Advice

Search space : A C € discrete set
Probabilistic experts : P; € M1(Q) for i e {1,...,K}
Requests : at time t, calling expert /; yields a realization of
Xt = Xj,.+ independent with law P,

Goal : find as many distinct elements of A as possible with
few requests :

Fn=Card (AN{X1,..., Xn})
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Extensions Exploration with Probabilistic Expert Advice

Goal
At each time step t =1,2,...:
> pick an index Iy = m¢ (I, Y1, .., o1, Yeo1) € {1,..., K}
according to past observations

» observe Y; = X, ~ Py,, where

nie =Y T{ls=i}

s<t

Nyt

Goal: design the strategy m = () so as to maximize the number
of important items found after t requests

Fm(t) = ‘Am V..., Yt}‘
Assumption: non-intersecting supports

> AN supp(P;) Nsupp(P;) =0 for i # j

e
YR
- .. .. o * o /.
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Extensions Exploration with Probabilistic Expert Advice

Is it a Bandit Problem ?

It looks like a bandit problem. ..
» sequential choices among K options
» want to maximize cumulative rewards

> exploration vs exploitation dilemma

... but it is not a bandit problem !
> rewards are not i.i.d.

» destructive rewards: no interest to observe twice the same
important item

> all strategies eventually equivalent
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Extensions Exploration with Probabilistic Expert Advice

The oracle strategy

Proposition: Under the non-intersecting support hypothesis, the
greedy oracle strategy selecting the expert with highest ‘missing
mass’

I} € argmax P (A\{Y1,..., Y:})
1<i<K

is optimal: for every possible strategy m, E[F”(t)] < E[F*(t)]

Remark: the proposition if false if the supports may intersect

—> estimate the “missing mass of important items”!
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Extensions Exploration with Probabilistic Expert Advice

Missing mass estimation
Let us first focus on one expert i: P = P;, X, = Xj »

Xi,...,X, independent draws of P

n

On(x) = Y T{Xm = x}

m=1

ASS DN

How to 'estimate’ the total mass of the unseen important items

Ra = P(x)I{On(x) =0} ?

XEA
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Extensions Exploration with Probabilistic Expert Advice

The Good-Turing Estimator

Idea: use the hapaxes = items seen only once (linguistic)

~ U,
R = — = =
h= where U, ZH{O,,(X) 1}
x€EA
Lemma [Good ’'53]: For every distribution P,

A 1
0 <E[R,] —E[Ry] < -

Proposition: With probability at least 1 — § for every P,

Ryt v B < g < Ry (14 vy )

See [McAllester and Schapire '00, McAllester and Ortiz '03]:
. > deviations of Rn: McDiarmid’s inequality

deviations of R,: negative association
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Extensions Exploration with Probabilistic Expert Advice

The Good-UCB algorithm [Bubeck, Ernst & G.]

Optimistic algorithm based on Good-Turing's estimator :

Hi(t) log (t)
/ = arg max +c
o ie{gl,...,K} { N;i(t) Ni(t)

» N;(t) = number of draws of P; up to time t

» H;(t) = number of elements of A seen exactly once thanks to
Pi

> ¢ = tuning parameter
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Extensions Exploration with Probabilistic Expert Advice

Classical analysis

Theorem: For any t > 1, under the non-intersecting support
assumption, Good-UCB (with constant C = (1 4 /2)v/3) satisfies

E [F*(t) - FUCB(t)} < 17+/Ktlog(t) + 20VKt + K + K log(t/K)

Remark: Usual result for bandit problem, but not-so-simple analysis
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Extensions Exploration with Probabilistic Expert Advice

A Typical Run of Good-UCB
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Extensions Exploration with Probabilistic Expert Advice

The macroscopic limit

> Restricted framework: P; =U{1,..., N}
» N = o0

» |ANsupp(P)|/N — q; € (0,1), g=>",qi
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Extensions Exploration with Probabilistic Expert Advice

The macroscopic limit

> Restricted framework: P; =U{1,..., N}
» N = o0

» |ANsupp(P)|/N — q; € (0,1), g=>",qi
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Extensions Exploration with Probabilistic Expert Advice

The macroscopic limit

> Restricted framework: P; =U{1,..., N}
» N = o0

» |ANsupp(P)|/N — q; € (0,1), g=>",qi
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Extensions Exploration with Probabilistic Expert Advice

The Oracle behaviour

The limiting discovery process of the Oracle strategy is
deterministic

Proposition: For every \ € (0, q1), for every sequence (ANM)y
converging to A as N goes to infinity, almost surely

. T*N()\N) _ qi
am =y =20 (s %),

]
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Extensions Exploration with Probabilistic Expert Advice

Oracle vs. uniform sampling

Oracle: The proportion of important items not found after
Nt draws tends to

G—F*(t) = ()g, ) &xp (~t/1(1)) < Ka,. xp(—t/K)

1/K
with g, = (H,K:1 q,-) the geometric mean of the

(Gi)i-
Uniform: The proportion of important items not found after
Nt draws tends to Kgk exp(—t/K)

= Asymptotic ratio of efficiency
_ k
_ 9k _ % > iz >
( ) - qi - B 1/K =
K <H;:1 qi)

larger if the (q;); are unbalanced
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Extensions Exploration with Probabilistic Expert Advice

Macroscopic optimality

Theorem: Take C = (1 + v/2)v/c + 2 with ¢ > 3/2 in the
Good-UCB algorithm.
» For every sequence (AN)y converging to A as N goes to
infinity, almost surely

. TLI)ICB()‘N) qi
imeup <30 (e ),

» The proportion of items found after Nt steps FCUCB

converges uniformly to F* as N goes to infinity

o

.‘“:':‘.gz?.
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Extensions Exploration with Probabilistic Expert Advice

Simulation

] 500 1000 1500 2000 2500 0 2000 4000 6000 8000 10000 12000

o 05 1 5 2 25 05 1 5 2 25 3 35
x10* x10°

Number of items found by Good-UCB (line), the oracle (bold dashed), and by
uniform sampling (light dotted) as a function of time, for sample sizes N =
128, N = 500, N = 1000 and N = 10000, in an environment with 7 experts.
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Extensions Exploration with Probabilistic Expert Advice
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