
Timing Analysis of Parallel and
Accelerated Software with

Event-Driven Delay-Induced Tasks
Federico Aromolo

Scuola Superiore Sant’Anna, Pisa, Italy

CAPITAL Workshop 2024: Scalable and Precise Timing Analysis for Multicore Platforms

June 14, 2024 – IRT Saint Exupéry, Toulouse, France

Federico Aromolo

Real-Time Systems Laboratory

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

• The Real-Time Systems Laboratory
(RETIS Lab) is part of the TeCIP Institute
of Scuola Superiore Sant’Anna – Pisa,
Italy
• Approx. 40 people

• Main topics:
• Embedded real-time systems
• Time-critical scheduling algorithms
• Advanced operating systems
• Adaptive resource management
• System-level cyber-security
• Safe and secure machine learning

2

Federico Aromolo

Heterogeneous computing platforms

• Emerging industry trend in the field of real-time embedded systems:
integrate multiple functionalities onto a single computing platform

• Heterogeneous platforms combine scalar multicores and HW accelerators
• E.g., FPGAs, GPUs, DSPs, AI engines, …

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

Hardware

Architecture of the Xilinx Versal ACAP SoC

3

Federico Aromolo

Heterogeneous computing platforms

• The typical software workload exploits the available platform
capabilities with complex execution patterns:
• Parallel computation on multiprocessors
• Hardware acceleration requests
• Data dependencies and shared resources

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

𝜏1

𝜏2

𝜏3 Accelerator

Core 3

Core 2

Core 1

Software

4

Federico Aromolo

Parallel task models

• There are different forms of sporadic parallel tasks, representing the
internal parallelism of each task in addition to the inter-task
parallelism inherent to multitasking

• Multi-threaded parallel task models:

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

Fork-join Directed Acyclic
Graph (DAG)

Synchronous parallel

5

Federico Aromolo

Parallel task models

• An important application of DAG parallel tasks is modeling and analyzing
the structure and scheduling behavior of OpenMP parallel software

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

From: Vargas et al. – “OpenMP and Timing Predictability: A Possible Union?” - 2015

Program code Program structure DAG model Timing analysis

6

Federico Aromolo

Parallel task models

• In the real-time sporadic parallel DAG model, each task 𝜏𝑖:

1. Is released sporadically with minimum period 𝑇𝑖
2. Is subject to a deadline 𝐷𝑖 ≤ 𝑇𝑖
3. Is structured as a directed acyclic graph (DAG)

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

Node – sequential
subtask with
given WCET

Edge – precedence
constraint between

subtasks
𝑣𝑖,2

𝑣𝑖,3𝑣𝑖,4

𝑣𝑖,5 𝑣𝑖,6

𝑣𝑖,7

20

10

10

60

40

20

𝑣𝑖,1

50

7

Federico Aromolo

Scheduling paradigms for parallel tasks

• Different scheduling paradigms exist to allocate and schedule
subtasks on the cores of a multiprocessor platform

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

𝜏1

𝜏2

𝜏3

𝜏4

Task set

Allocation Scheduling

Schedule

Core 4

Core 3

Core 2

Core 1

time

Core 3 Core 4

Core 2Core 1

Multiprocessor
platform

8

Federico Aromolo

Scheduling paradigms for parallel tasks

• Partitioned scheduling:

1. At design time, each node is statically allocated to a specific processor

2. At runtime, nodes are scheduled on the corresponding processor with a
uniprocessor policy

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

(1) Allocation (2) Scheduling𝑣𝑖,2

𝑣𝑖,3𝑣𝑖,4

𝑣𝑖,5 𝑣𝑖,6

𝑣𝑖,7𝑣𝑖,1

Core 𝑃1 Core 𝑃2

𝑣𝑖,1

Core 𝑃2

Core 𝑃1

𝑣𝑖,2

𝑣𝑖,4 𝑣𝑖,5

𝑣𝑖,6

𝑣𝑖,3

𝑣𝑖,7

9

Federico Aromolo

Scheduling paradigms for parallel tasks

• Advantage: uniprocessor scheduling and analysis techniques can be
reused

• Disadvantage: requires solving a complex allocation problem at
design time (typically approached with bin-packing heuristics)

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

𝑣𝑖,2

𝑣𝑖,5

𝑣𝑖,6

𝑣𝑖,3

𝑣𝑖,7

Core 𝑃2Core 𝑃1

𝑣𝑖,1

𝑣𝑖,4

Processor
utilization

Core 𝑃1 Core 𝑃2

𝑣𝑖,2

𝑣𝑖,3𝑣𝑖,4

𝑣𝑖,5 𝑣𝑖,6

𝑣𝑖,7𝑣𝑖,1

10

Federico Aromolo

Scheduling paradigms for parallel tasks

• Global scheduling: each subtask can execute on any one of the
processors available at a given time, according to their priority level

• Advantage: flexible runtime behavior with automatic load balancing

• Disadvantages: significant overheads due to migration; complex
WCET analysis

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

𝑣𝑖,2

𝑣𝑖,3𝑣𝑖,4

𝑣𝑖,5 𝑣𝑖,6

𝑣𝑖,7𝑣𝑖,1

𝑣𝑖,1

Core 𝑃2

Core 𝑃1

𝑣𝑖,2

𝑣𝑖,4

𝑣𝑖,5 𝑣𝑖,6

𝑣𝑖,3

𝑣𝑖,7

11

Federico Aromolo

Scheduling paradigms for parallel tasks

• Federated scheduling: hybrid approach
• 1. Each heavy task (𝑈𝑖 ≥ 1) is assigned a set of dedicated processors, where it

is scheduled in isolation by a global scheduler

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

𝜏1

𝜏2

𝜏3

𝜏4

Task set

𝑈1 < 1

𝑈2 < 1

𝑈3 ≥ 1

𝑈4 < 1 Multiprocessor
platform

Core 3 Core 4

Core 2Core 1

Global
scheduler

12

Federico Aromolo

Scheduling paradigms for parallel tasks

• Federated scheduling: hybrid approach
• 2. Light tasks (𝑈𝑖 < 1) are treated as sequential tasks and partitioned on the

remaining processors, where they are scheduled with a uniprocessor policy

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

𝜏1

𝜏2

𝜏3

𝜏4

Task set

Global
scheduler

Uniprocessor
scheduler

Multiprocessor
platform

Core 3 Core 4

Core 2Core 1

𝑈1 < 1

𝑈2 < 1

𝑈3 ≥ 1

𝑈4 < 1
Partitioning

13

Federico Aromolo

Scheduling paradigms for parallel tasks

• Advantage: simple and efficient analysis

• Disadvantage: processors dedicated to a heavy task can be underutilized

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

𝜏1

𝜏2

𝜏3

𝜏4

Task set

𝑈1 < 1

𝑈2 < 1

𝑈3 ≥ 1

𝑈4 < 1 Multiprocessor
platform

Core 3 Core 4

Core 2Core 1

Global
scheduler

Uniprocessor
scheduler

Partitioning

14

Federico Aromolo

Scheduling paradigms for parallel tasks

• Partitioned scheduling:
• Practical advantages in the implementation

• Fine-grained control of memory contention and tight blocking bounds in the
presence of locking

• Design-time complexity can be approached with specialized bin packing heuristics

• Empirical evaluations of C=D semi-partitioned EDF scheduling of sequential
tasks showed 99%+ schedulable utilization on multiprocessors (Burns et al.
2012, Brandenburg and Gül 2016)
• C=D semi-partitioned scheduling is a simple and practical approach, as opposed to

complex optimal global scheduling algorithms, which incur significant overheads

• However, a specialized and effective analysis for partitioned parallel tasks
is still missing

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks 15

Federico Aromolo

Hardware acceleration

• Another form of parallelism is due to hardware acceleration

• Synchronous hardware acceleration: when offloading computation
to the accelerator, the task must wait for the completion of the
acceleration before proceeding

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

CPU

time

Waiting time

HW

Completion
event

Acceleration
request

𝚫
Synchronous

HW acceleration

16

Federico Aromolo

Self-suspending tasks

• Since acceleration delays may be significant, the typical
implementation involves a self-suspending behavior

• The self-suspending task model was introduced to deal with self-
suspending behaviors in the real-time analysis
• E.g., hardware acceleration, locking protocols, inter-processor synchronization

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

𝝉𝒊

time

Waiting time Event occurs
Wait for

event

𝚫

Self-suspension

17

Federico Aromolo

Self-suspending tasks

• Under the dynamic self-suspending task model, each task 𝜏𝑖:

1. Is released sporadically with minimum period 𝑇𝑖
2. Is subject to a deadline 𝐷𝑖 ≤ 𝑇𝑖
3. Alternates an arbitrary number of execution and suspension phases

up to a cumulative WCET 𝐶𝑖 and a cumulative suspension time 𝑆𝑖

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

Minimum period 𝑻𝒊

WCET 𝑪𝒊

…

time
Deadline 𝑫𝒊

𝝉𝒊

Suspension 𝑺𝒊

18

Federico Aromolo

Hardware acceleration

• Asynchronous hardware acceleration: after offloading computation
to the accelerator, the task can continue executing on the processor
before waiting for the completion of the acceleration

• Self-suspending task models do not explicitly support asynchronous
hardware acceleration

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

CPU

time

HW

Completion
event

Acceleration
request

𝚫

Wait for
completion

Asynchronous
HW acceleration

19

Federico Aromolo

Event-related delays

• Asynchronous HW acceleration and partitioned scheduling of parallel
tasks share a common scheduling pattern in which the task must wait
for an asynchronous event, thus incurring event-related delays

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks 20

CPU

time

HW

Completion
event

Acceleration
request

𝚫

Wait for
completion

Asynchronous
HW acceleration

Event-related delay

Federico Aromolo

Event-related delays

• Asynchronous HW acceleration and partitioned scheduling of parallel
tasks share a common scheduling pattern in which the task must wait
for an asynchronous event, thus incurring event-related delays

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

𝑣𝑖,𝐴

𝑣𝑖,𝐵

𝑣𝑖,𝐶

𝑣𝑖,𝐷

𝑣𝑖,𝐹

𝑣𝑖,𝐸

𝑣𝑖,𝐺

𝑣𝑖,𝐴

𝑣𝑖,𝐵

𝑣𝑖,𝐷

𝑣𝑖,𝐶

𝑣𝑖,𝐹

𝑣𝑖,𝐸

𝑣𝑖,𝐺
𝚫

𝚫

𝚫

time

Core 1

Core 2

Partitioned
parallel tasks Event-related delay

21

Federico Aromolo

EDD task model

• Existing techniques either deal with event-related delays with
considerable analytical pessimism, or can only support specific types
of workloads

• Contribution: definition of the event-driven delay-induced (EDD)
task model, which explicitly deals with complex computing workloads
incurring event-related delays

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

𝑣𝑖
𝐶 𝑣𝑖

𝐸

𝑣𝑖
𝐷

𝑣𝑖
𝐵

0
0,0

0,2

1,2

0,1 1,2

0,2

1 2 1

2

1

𝑣𝑖
𝐴𝑣𝑖

𝑠

22

Federico Aromolo

Contributions

• Event-driven delay-induced (EDD) task model:
• Explicitly deals with complex computing workloads that incur event-related delays

• Analysis techniques: closed-form and optimization-based
• Applications:

• Modeling of asynchronous hardware acceleration
• Analysis of partitioned parallel DAG tasks on multicores
• Generalization of existing task models

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

𝑣𝑖
𝐶 𝑣𝑖

𝐸

𝑣𝑖
𝐷

𝑣𝑖
𝐵

0
0,0

0,2

1,2

0,1 1,2

0,2

1 2 1

2

1

𝑣𝑖
𝐴𝑣𝑖

𝑠

23

Federico Aromolo

EDD task model

• Preemptive execution on a single processor

• Each EDD task 𝜏𝑖 in a task set 𝜏:
• is released with a minimum inter-arrival time 𝑇𝑖
• must complete within a deadline 𝐷𝑖 ≤ 𝑇𝑖
• is scheduled with fixed priorities 𝜋𝑖

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

𝑣𝑖
𝐶 𝑣𝑖

𝐸

𝑣𝑖
𝐷

𝑣𝑖
𝐵

0
0,0

0,2

1,2

0,1 1,2

0,2

1 2 1

2

1

𝑣𝑖
𝐴𝑣𝑖

𝑠

24

Federico Aromolo

EDD task model

• The workload of a task is described by a directed acyclic graph (DAG) 𝐺𝑖

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

𝑣𝑖
𝐶 𝑣𝑖

𝐸

𝑣𝑖
𝐷

𝑣𝑖
𝐵

0
0,0

0,2

1,2

0,1 1,2

0,2

1 2 1

2

1

𝑣𝑖
𝐴𝑣𝑖

𝑠

25

Federico Aromolo

EDD task model

• The workload of a task is described by a directed acyclic graph (DAG) 𝐺𝑖

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

𝑣𝑖
𝐶 𝑣𝑖

𝐸

𝑣𝑖
𝐷

𝑣𝑖
𝐵

0
0,0

0,2

1,2

0,1 1,2

0,2

1 2 1

2

1

𝑣𝑖
𝐴𝑣𝑖

𝑠

Source node –
represents the

task release

26

Federico Aromolo

EDD task model

• The workload of a task is described by a directed acyclic graph (DAG) 𝐺𝑖

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

Source node –
represents the

task release

Node – sequential
computation with

given WCET

𝑣𝑖
𝑠 𝑣𝑖

𝐶 𝑣𝑖
𝐸

𝑣𝑖
𝐷

𝑣𝑖
𝐵

0
0,0

0,2

1,2

0,1 1,2

0,2

1 2 1

2

1

𝑣𝑖
𝐴

27

Federico Aromolo

EDD task model

• The workload of a task is described by a directed acyclic graph (DAG) 𝐺𝑖

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

Source node –
represents the

task release

Node – sequential
computation with

given WCET

Edge – precedence
constraint between

sequential computations

𝑣𝑖
𝑠 𝑣𝑖

𝐴 𝑣𝑖
𝐶 𝑣𝑖

𝐸

𝑣𝑖
𝐷

𝑣𝑖
𝐵

0
0,0

0,2

1,2

0,1 1,2

0,2

1 2 1

2

1

28

Federico Aromolo

EDD task model

• Precedence constraint: satisfied once a variable delay has elapsed
after the completion of the predecessor node
• Models bounded delays related to task release or subtask completion events

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

𝑣𝑖
𝐴 𝑣𝑖

𝐵
𝑤𝑖
𝐴,𝐵 ∈ 0,2

Min/max delay length

𝑣𝑖
𝑠 𝑣𝑖

𝐴 𝑣𝑖
𝐶 𝑣𝑖

𝐸

𝑣𝑖
𝐷

𝑣𝑖
𝐵

0
0,0

0,2

1,2

0,1 1,2

0,2

1 2 1

2

1

29

Federico Aromolo

EDD task model

• All subtasks are released simultaneously at task release, but cannot
execute until the incoming precedence constraints are satisfied

• If no subtask is ready for execution, the task is suspended

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

𝜏𝑖 = 𝐺𝑖 , 𝑇𝑖 , 𝐷𝑖 , 𝜋𝑖

𝑣𝑖
𝑠 𝑣𝑖

𝐴 𝑣𝑖
𝐶 𝑣𝑖

𝐸

𝑣𝑖
𝐷

𝑣𝑖
𝐵

0
0,0

0,2

1,2

0,1 1,2

0,2

1 2 1

2

1

30

Federico Aromolo

Example schedule

𝑣𝑖
𝑠 𝑣𝑖

𝐴 𝑣𝑖
𝐶 𝑣𝑖

𝐸

𝑣𝑖
𝐷

𝑣𝑖
𝐵

0
0,0

0,2

1,2

0,1 1,2

0,2

1 2 1

2

1

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

0 1 2 3 4 5 6 7 8 9 10 11

𝜏𝑝

𝜏𝑖

31

Federico Aromolo

𝑣𝑖
𝐴

0 1 2 3 4 5 6 7 8 9 10 11

𝜏𝑝

𝜏𝑖

Example schedule

𝑣𝑖
𝑠 𝑣𝑖

𝐶 𝑣𝑖
𝐸

𝑣𝑖
𝐷

𝑣𝑖
𝐵

0
0,0

0,2

1,2

0,1 1,2

0,2

1 2 1

2

1

𝑣𝑖
𝐴

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks 32

Federico Aromolo

𝑣𝑖
𝐴

0 1 2 3 4 5 6 7 8 9 10 11

𝜏𝑝

𝑤𝑖
𝐴,𝐵

𝑤𝑖
𝐴,𝐶

𝑤𝑖
𝐴,𝐷

𝜏𝑖

Example schedule

𝑣𝑖
𝑠 𝑣𝑖

𝐴 𝑣𝑖
𝐶 𝑣𝑖

𝐸

𝑣𝑖
𝐷

𝑣𝑖
𝐵

0
0,0

0,2

1,2

0,1 1,2

0,2

1 2 1

2

1

Event-related delay

𝑤𝑖
𝐴,𝐵 ∈ [0,2]

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks 33

Federico Aromolo

𝑣𝑖
𝐴

0 1 2 3 4 5 6 7 8 9 10 11

𝜏𝑝

𝑤𝑖
𝐴,𝐵

𝑤𝑖
𝐴,𝐶

𝑤𝑖
𝐴,𝐷

𝜏𝑖

Example schedule

Suspension: no
subtask is ready

for execution

Event-related delay

𝑤𝑖
𝐴,𝐵 ∈ [0,2]

𝑣𝑖
𝑠 𝑣𝑖

𝐴 𝑣𝑖
𝐶 𝑣𝑖

𝐸

𝑣𝑖
𝐷

𝑣𝑖
𝐵

0
0,0

0,2

1,2

0,1 1,2

0,2

1 2 1

2

1

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks 34

Federico Aromolo

𝑣𝑖
𝐴

0 1

𝑣𝑖
𝐵

2 3 4

𝑣𝑖
𝐵

5 6 7 8 9 10 11

𝜏𝑝
𝜏𝑝

𝑤𝑖
𝐴,𝐵

𝑤𝑖
𝐴,𝐶

𝑤𝑖
𝐴,𝐷

𝜏𝑖

Example schedule

𝑣𝑖
𝑠 𝑣𝑖

𝐴 𝑣𝑖
𝐶 𝑣𝑖

𝐸

𝑣𝑖
𝐷

0
0,0

0,2

1,2

0,1 1,2

0,2

1 2 1

2

1

𝑣𝑖
𝐵

Suspension: no
subtask is ready

for execution

Event-related delay

𝑤𝑖
𝐴,𝐵 ∈ [0,2]

Interference from
higher-priority task 𝜏𝑝

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks 35

Federico Aromolo

𝑣𝑖
𝐴

0 1

𝑣𝑖
𝐵

2 3 4

𝑣𝑖
𝐵

5

𝑣𝑖
𝐶

6 7 8 9 10 11

𝜏𝑝

𝑤𝑖
𝐴,𝐵

𝑤𝑖
𝐴,𝐶

𝑤𝑖
𝐴,𝐷

𝑤𝑖
𝐶,𝐸

𝜏𝑖

𝜏𝑝

Example schedule

Interference from
higher-priority task 𝜏𝑝

𝑣𝑖
𝑠 𝑣𝑖

𝐴 𝑣𝑖
𝐸

𝑣𝑖
𝐷

𝑣𝑖
𝐵

0
0,0

0,2

1,2

0,1 1,2

0,2

1 2 1

2

1

𝑣𝑖
𝐶

Event-related delay

𝑤𝑖
𝐴,𝐵 ∈ [0,2]

Suspension: no
subtask is ready

for execution

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks 36

Federico Aromolo

𝑣𝑖
𝐴

0 1

𝑣𝑖
𝐵

2 3 4

𝑣𝑖
𝐵

5

𝑣𝑖
𝐶

6 7

𝑣𝑖
𝐷

8 9 10 11

𝜏𝑝

𝑤𝑖
𝐴,𝐵

𝑤𝑖
𝐴,𝐶

𝑤𝑖
𝐴,𝐷

𝑤𝑖
𝐶,𝐸

𝑤𝑖
𝐷,𝐸

𝜏𝑖

𝜏𝑝

Example schedule

Interference from
higher-priority task 𝜏𝑝

𝑣𝑖
𝑠 𝑣𝑖

𝐴 𝑣𝑖
𝐶 𝑣𝑖

𝐸

𝑣𝑖
𝐵

0
0,0

0,2

1,2

0,1 1,2

0,2

1 2 1

2

1

𝑣𝑖
𝐷

Event-related delay

𝑤𝑖
𝐴,𝐵 ∈ [0,2]

Suspension: no
subtask is ready

for execution

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks 37

Federico Aromolo

𝑣𝑖
𝐴

0 1

𝑣𝑖
𝐵

2 3 4

𝑣𝑖
𝐵

5

𝑣𝑖
𝐶

6 7

𝑣𝑖
𝐷

8 9 10 11

𝜏𝑝

𝑤𝑖
𝐴,𝐵

𝑤𝑖
𝐴,𝐶

𝑤𝑖
𝐴,𝐷

𝑤𝑖
𝐶,𝐸

𝑤𝑖
𝐷,𝐸

𝜏𝑖

𝜏𝑝

Example schedule

Interference from
higher-priority task 𝜏𝑝

𝑣𝑖
𝑠 𝑣𝑖

𝐴 𝑣𝑖
𝐶 𝑣𝑖

𝐸

𝑣𝑖
𝐷

𝑣𝑖
𝐵

0
0,0

0,2

1,2

0,1 1,2

0,2

1 2 1

2

1

Event-related delay

𝑤𝑖
𝐴,𝐵 ∈ [0,2]

Suspension: no
subtask is ready

for execution

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks 38

Federico Aromolo

𝑣𝑖
𝐴

0 1

𝑣𝑖
𝐵

2 3 4

𝑣𝑖
𝐵

5

𝑣𝑖
𝐶

6 7

𝑣𝑖
𝐷

8 9

𝑣𝑖
𝐸

10 11

𝜏𝑝

𝑤𝑖
𝐴,𝐵

𝑤𝑖
𝐴,𝐶

𝑤𝑖
𝐴,𝐷

𝑤𝑖
𝐶,𝐸

𝑤𝑖
𝐷,𝐸

𝜏𝑖

𝜏𝑝

Example schedule

Interference from
higher-priority task 𝜏𝑝

𝑣𝑖
𝑠 𝑣𝑖

𝐴 𝑣𝑖
𝐶

𝑣𝑖
𝐷

𝑣𝑖
𝐵

0
0,0

0,2

1,2

0,1 1,2

0,2

1 2 1

2

1

𝑣𝑖
𝐸

Event-related delay

𝑤𝑖
𝐴,𝐵 ∈ [0,2]

Suspension: no
subtask is ready

for execution

Both precedence
constraints satisfied

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks 39

Federico Aromolo

𝑣𝑖
𝐴

0 1

𝑣𝑖
𝐵

2 3 4

𝑣𝑖
𝐵

5

𝑣𝑖
𝐶

6 7

𝑣𝑖
𝐷

8 9

𝑣𝑖
𝐸

10 11

𝜏𝑝

𝑤𝑖
𝐴,𝐵

𝑤𝑖
𝐴,𝐶

𝑤𝑖
𝐴,𝐷

𝑤𝑖
𝐶,𝐸

𝑤𝑖
𝐷,𝐸

𝜏𝑖

𝜏𝑝

Analysis for EDD tasks

• Problem: obtain a response time analysis (RTA) for an EDD task set
• Determine a worst-case response time (WCRT) upper bound ത𝑅𝑖 for each task
• Verify if all deadlines are guaranteed: ത𝑅𝑖 ≤ 𝐷𝑖 for each 𝜏𝑖

• Observation: the scheduling behavior on the processor alternates
execution and suspension intervals

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

Self-suspending
behavior

40

Federico Aromolo

Closed-form analysis

• Dynamic self-suspending (DSS) tasks alternate execution and suspension
phases up to a cumulative WCET 𝐶𝑖 and a cumulative suspension time 𝑆𝑖

• Theorem: the timing behavior of an EDD task can be safely modeled by a
DSS task with
• WCET equal to the sum of the WCETs of all DAG nodes
• Maximum suspension time equal to the maximum delay encountered over any path

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

𝜏𝑖
𝐸𝐷𝐷 = 𝐺𝑖 , 𝑇𝑖 , 𝐷𝑖 , 𝜋𝑖

𝑣𝑖
𝐴

𝑣𝑖
𝐵

𝑣𝑖
𝐶

𝑣𝑖
𝐷

𝑣𝑖
𝐸

0,2

0,1 1,2

0,2

1

2

2

1

1

𝑣𝑖
𝑠 0,0

0

1,2

𝜏𝑖
𝐷𝑆𝑆 = 𝐶𝑖

′, 𝑆𝑖
′, 𝐷𝑖 , 𝑇𝑖 , 𝜋𝑖

EDD to DSS

41

Federico Aromolo

Closed-form analysis

• Dynamic self-suspending (DSS) tasks alternate execution and suspension
phases up to a cumulative WCET 𝐶𝑖 and a cumulative suspension time 𝑆𝑖

• Theorem: the timing behavior of an EDD task can be safely modeled by a
DSS task with
• WCET equal to the sum of the WCETs of all DAG nodes
• Maximum suspension time equal to the maximum delay encountered over any path

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

𝜏𝑖
𝐸𝐷𝐷 = 𝐺𝑖 , 𝑇𝑖 , 𝐷𝑖 , 𝜋𝑖

𝐶𝑖
′ = ෍

𝑣𝑖
𝑎∈𝑉𝑖

𝐶𝑖
𝑎 = 7

𝑣𝑖
𝐴

𝑣𝑖
𝐵

𝑣𝑖
𝐶

𝑣𝑖
𝐷

𝑣𝑖
𝐸

0,2

0,1 1,2

0,2

1

2

2

1

1

𝑣𝑖
𝑠 0,0

0

1,2
𝑆𝑖
′ = max

𝜆∈𝑃𝐴𝑇𝐻(𝐺𝑖)
෍

𝑒𝑖
𝑎,𝑏∈𝐸(𝜆)

𝑊𝑖
𝑎,𝑏 = 4

𝜏𝑖
𝐷𝑆𝑆 = 𝐶𝑖

′, 𝑆𝑖
′, 𝐷𝑖 , 𝑇𝑖 , 𝜋𝑖

EDD to DSS

42

Federico Aromolo

Closed-form analysis

• Dynamic self-suspending (DSS) tasks alternate execution and suspension
phases up to a cumulative WCET 𝐶𝑖 and a cumulative suspension time 𝑆𝑖

• Theorem: the timing behavior of an EDD task can be safely modeled by a
DSS task with
• WCET equal to the sum of the WCETs of all DAG nodes
• Maximum suspension time equal to the maximum delay encountered over any path

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

𝜏𝑖
𝐸𝐷𝐷 = 𝐺𝑖 , 𝑇𝑖 , 𝐷𝑖 , 𝜋𝑖

𝐶𝑖
′ = ෍

𝑣𝑖
𝑎∈𝑉𝑖

𝐶𝑖
𝑎 = 7

𝑣𝑖
𝐴

𝑣𝑖
𝐵

𝑣𝑖
𝐶

𝑣𝑖
𝐷

𝑣𝑖
𝐸

0,2

0,1 1,2

0,2

1

2

2

1

1

𝑣𝑖
𝑠 0,0

0

1,2
𝑆𝑖
′ = max

𝜆∈𝑃𝐴𝑇𝐻(𝐺𝑖)
෍

𝑒𝑖
𝑎,𝑏∈𝐸(𝜆)

𝑊𝑖
𝑎,𝑏 = 4

𝜏𝑖
𝐷𝑆𝑆 = 𝐶𝑖

′, 𝑆𝑖
′, 𝐷𝑖 , 𝑇𝑖 , 𝜋𝑖

EDD to DSS

43

Federico Aromolo

Closed-form analysis

• The resulting DSS tasks can be analyzed by means of a DSS RTA [Chen et al.,
2016] to obtain WCRT upper bounds ത𝑅𝑖 for each task

• A node-level analysis is also presented to obtain WCRT UBs ത𝑅𝑖
𝑎 for each

node

• Pseudo-polynomial time complexity

• Note: the transformation is compatible with both FP and EDF scheduling

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

Linear-time
transformation

𝜏𝑖
𝐸𝐷𝐷

𝜏𝑖
𝐷𝑆𝑆 ത𝑅𝑖

Fixed-point iteration
[Chen et al. 2016]

EDD to DSS DSS RTA

44

Federico Aromolo

Optimization-based analysis

• A mixed-integer linear programming (MILP) formulation is proposed
to improve upon the WCRT UBs obtained with the closed-form RTA
• The MILP models a generic schedule for the task under analysis

• Objective function: maximize the response time among sink nodes

• Constraints: impose necessary conditions to exclude impossible schedules

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

Linear-time
transformation

𝜏𝑖
𝐸𝐷𝐷

𝜏𝑖
𝐷𝑆𝑆 ത𝑅𝑖

Fixed-point iteration
[Chen et al. 2016]

EDD to DSS DSS RTA
ത𝑅𝑖
𝑂𝑃𝑇𝐼 ≤ ത𝑅𝑖

MILP RTA

MILP
formulation

Maximize 𝑅𝑖 = max
𝑣𝑖
𝑎∈𝑠𝑖𝑛𝑘(𝐺𝑖)

𝑅𝑖
𝑎

such that ...

45

Federico Aromolo

RTA comparison

• Example: consider an EDD task 𝜏𝑖 with 𝑇𝑖 = 1000 executing in isolation
• The DSS-based RTA gives a WCRT UB of ത𝑅𝑖 = 900, since, in this case, 𝐶𝑖

′ = 400 and 𝑆𝑖
′ = 500

• The MILP-based RTA can more accurately account for the specific DAG topology, giving a
WCRT UB of ത𝑅𝑖

𝑂𝑃𝑇𝐼 = 600

• In fact, nodes 𝑣𝑖
𝐵, 𝑣𝑖

𝐶 and 𝑣𝑖
𝐷 can execute even if the event triggering 𝑣𝑖

𝐸 has not yet occurred

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

𝑣𝑖
𝐵 𝑣𝑖

𝐶

𝑣𝑖
𝐸

0
0,0

0,500

0,0 0,0
50 100 100

50

𝑣𝑖
𝐴𝑣𝑖

𝑠 𝑣𝑖
𝐷

100
0,0

0,200 ത𝑅𝑖 = 900
DSS RTA

ത𝑅𝑖
𝑂𝑃𝑇𝐼 = 600

MILP RTA

𝑣𝑖
𝐴

0 50

𝑣𝑖
𝐵

100 150 200

𝑣𝑖
𝐶

250

𝑣𝑖
𝐷

300 350 400 450 500 550

𝜏𝑖

𝑤𝑖
𝐴,𝐸

𝑤𝑖
𝐵,𝐷

600

𝑣𝑖
𝐸

46

Federico Aromolo

Generalization of other task models

• Sequential sporadic tasks with release jitter
• Sporadic release with jitter 𝐽 and WCET 𝐶

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

𝐽

𝑇

𝐶

…

47

Federico Aromolo

Generalization of other task models

• Sequential sporadic tasks with release jitter
• Sporadic release with jitter 𝐽 and WCET 𝐶

• Can be represented with a node with WCET 𝐶, and an edge with label 0, 𝐽
incoming from the source node

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

𝑣𝑖
𝑠 𝑣𝑖

1

0
0, 𝐽

𝐶
𝐽

𝑇

𝐶

…

48

Federico Aromolo

Generalization of other task models

• Segmented self-suspending tasks
• Alternate executions and suspensions with a given pattern:
𝐶1, 𝑆1, 𝐶2, 𝑆2, … , 𝐶𝑘

• 𝑆𝑗: worst-case suspension time between successive subtasks

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

𝐶1 𝑆1 𝐶2 𝑆2 𝐶3

𝑇

…

49

Federico Aromolo

Generalization of other task models

• Segmented self-suspending tasks
• Alternate executions and suspensions with a given pattern:
𝐶1, 𝑆1, 𝐶2, 𝑆2, … , 𝐶𝑘

• 𝑆𝑗: worst-case suspension time between successive subtasks
• Can be represented with a linear DAG with (0, 𝑆𝑗) labels on the edges

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

𝑣𝑖
𝑠 𝑣𝑖

1 𝑣𝑖
2 𝑣𝑖

3

0
0,0 0, 𝑆1 0, 𝑆2

𝐶1 𝐶2 𝐶3

𝐶1 𝑆1 𝐶2 𝑆2 𝐶3

𝑇

…

50

Federico Aromolo

Generalization of other task models

• Transactional tasks with offsets
• Collection of independent subtasks released with fixed offset Φ𝑗 and variable

jitter 𝐽𝑗, relative to task release

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

Φ1

𝐶1

…J1

Φ2

𝐶2

…J2

Φ3

𝐶3

…J3

𝑇

51

Federico Aromolo

Generalization of other task models

• Transactional tasks with offsets
• Collection of independent subtasks released with fixed offset Φ𝑗 and variable

jitter 𝐽𝑗, relative to task release
• Can be represented with one node for each subtask in the transaction, each

connected to the source node with labels Φj, Φj + 𝐽𝑗

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

𝑣𝑖
𝑠 𝑣𝑖

2

𝑣𝑖
3

𝑣𝑖
1

Φ1, Φ1 + 𝐽1

Φ3, Φ3 + 𝐽3

Φ2, Φ2 + 𝐽2
0

𝐶2

𝐶1

𝐶3

Φ1

𝐶1

…J1

Φ2

𝐶2

…J2

Φ3

𝐶3

…J3

𝑇

52

Federico Aromolo

Modeling asynchronous GPU acceleration

• Example: asynchronous GPU acceleration with NVIDIA CUDA Runtime API

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

TASK(example)
{

}

GPU

0 2 4 62

CPU

time

53

Federico Aromolo

Modeling asynchronous GPU acceleration

• Example: asynchronous GPU acceleration with NVIDIA CUDA Runtime API

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

TASK(example)
{
 <execute on the CPU (A)>

 // asynchronously launch GPU kernel
 gpu_kernel<<<blocks, threads>>>();

}

GPU

0 2 4 62

CPU A

time

gpu_kernel

54

Federico Aromolo

Modeling asynchronous GPU acceleration

• Example: asynchronous GPU acceleration with NVIDIA CUDA Runtime API

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

TASK(example)
{
 <execute on the CPU (A)>

 // asynchronously launch GPU kernel
 gpu_kernel<<<blocks, threads>>>();

 // execute in parallel on the CPU
 <execute on the CPU (B)>

 // wait for kernel completion
 cudaDeviceSynchronize();

}

GPU

0 2 4 62

CPU BA

time

cudaDeviceSynchronizegpu_kernel

55

Federico Aromolo

Modeling asynchronous GPU acceleration

• Example: asynchronous GPU acceleration with NVIDIA CUDA Runtime API

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

TASK(example)
{
 <execute on the CPU (A)>

 // asynchronously launch GPU kernel
 gpu_kernel<<<blocks, threads>>>();

 // execute in parallel on the CPU
 <execute on the CPU (B)>

 // wait for kernel completion
 cudaDeviceSynchronize();

 <execute on the CPU (C)>
}

C

GPU

0 2 4 62

CPU BA

time

cudaDeviceSynchronizegpu_kernel

56

Federico Aromolo

Modeling asynchronous GPU acceleration

• Example: asynchronous GPU acceleration with NVIDIA CUDA Runtime API

• Modeled by an EDD task with nodes representing CPU execution and an
edge with delay given by the min/max response time of the GPU kernel

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

TASK(example)
{
 <execute on the CPU (A)>

 // asynchronously launch GPU kernel
 gpu_kernel<<<blocks, threads>>>();

 // execute in parallel on the CPU
 <execute on the CPU (B)>

 // wait for kernel completion
 cudaDeviceSynchronize();

 <execute on the CPU (C)>
}

𝑣𝑖
𝑠 𝑣𝑖

𝐴 𝑣𝑖
𝐵 𝑣𝑖

𝐶

0
0,0 0,0 0,0

𝐶𝑖
𝐴 𝐶𝑖

𝐵 𝐶𝑖
𝐶

𝑾𝑲,𝑾𝑲Min/max delay

C

GPU

0 2 4 62

CPU BA

time

cudaDeviceSynchronizegpu_kernel

𝒘𝑲

57

Federico Aromolo

Modeling FPGA hardware acceleration

• Example: FRED is a scheduling framework for time-predictable FPGA
hardware acceleration [Biondi et al. 2016]
• The FPGA area is statically partitioned into slots of fixed size
• Software tasks can request the execution of FPGA-accelerated functions (hardware

tasks)
• Dynamic partial reconfiguration (DPR) is leveraged to reconfigure the FPGA slots at

runtime with different hardware tasks

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

Hardware tasks

FPGA slots

Software tasks

Acceleration
requests

Host system FPGA area

…
Slot 1 Slot 𝑁

HW taskHW task

DRAM controller

DRAM

Interconnect

Processor

Cache

58

Federico Aromolo

Modeling FPGA hardware acceleration

• The FRED framework enables predictable time multiplexing of
FPGA resources to support sets of hardware tasks with total FPGA
area requirements exceeding the physical area

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

Hardware tasks

FPGA slots

Software tasks

Acceleration
requests

Host system FPGA area

…
Slot 1 Slot 𝑁

HW taskHW task

DRAM controller

DRAM

Interconnect

Processor

Cache

59

Federico Aromolo

Modeling FPGA hardware acceleration

• Differently from GPU-based systems, the acceleration delays are
decoupled from the software scheduling behavior, and can be upper
bounded using a specialized timing analysis
• Predictable access to shared resources (FPGA slots and FPGA reconfiguration

interface) is guaranteed by a specialized scheduling infrastructure
• The resulting suspension time is given by the sum of the resource contention delay,

the slot reconfiguration time, and the execution time of the hardware task

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

…

𝑄1

𝑄𝑁

…

𝑄2

𝑄𝐹𝑅𝐼

Affinity

HW-task

Slot queues

HW-task
request

FPGA area

FRI
queue

Scheduling infrastructure

Slot 1

Slot 2

Slot 𝑁
FPGA

CPU

Contention delay Reconfiguration Execution

Suspension

Acceleration request

time

60

Federico Aromolo

Modeling FPGA hardware acceleration

• In the overall timing analysis, software tasks are treated as segmented self-
suspending tasks to account for multiple acceleration requests from each task

• This allows modeling the timing behavior of synchronous HW acceleration

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

time

A B C

FPGA

CPU

Synchronous request Synchronous request

𝑤𝐻1 𝑤𝐻2

𝐶3𝐶2𝐶1 𝑆2

time
CPU

𝑆1

61

Federico Aromolo

Modeling FPGA hardware acceleration

• The current implementation of the FRED framework is compatible with both
synchronous and asynchronous acceleration

• Applying the EDD task model to the FRED timing analysis allows capturing more
complex behaviors, including asynchronous acceleration requests

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

𝑣𝑖
𝐴 𝑣𝑖

𝐵 𝑣𝑖
𝐶 𝑣𝑖

𝐷

𝐶𝑖
𝐴

0,𝑊𝐻1 0,0 0,0

𝐶𝑖
𝐵 𝐶𝑖

𝐶 𝐶𝑖
𝐷

0,𝑊𝐻2

𝑣𝑖
𝑠

0

0,0

time

A B

FPGA

CPU

Synchronous request

C

Asynchronous request

𝑤𝐻1 𝑤𝐻2

D

62

Federico Aromolo

Modeling partitioned parallel DAG tasks

• Partitioned parallel DAG tasks:
• Workload represented by a DAG executing on a multiprocessor system

• Partitioned scheduling: each node is assigned to a specific processor
• Nodes are scheduled according to a preemptive, fixed-priority uniprocessor policy

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

CPU 1

CPU 2

𝑣𝑖
𝐴 𝑣𝑖

𝐶 𝑣𝑖
𝐹

𝑣𝑖
𝐷

𝑣𝑖
𝐵 𝑣𝑖

𝐸

𝑣𝑖
𝐺

63

Federico Aromolo

Modeling partitioned parallel DAG tasks

• Application: a partitioned parallel task can be modeled by a set of
EDD tasks (one for each core) for the purpose of real-time analysis

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

CPU 1

CPU 2

𝑣𝑖
𝐴

𝑣𝑖
𝐵

𝑣𝑖
𝐶

𝑣𝑖
𝐷

𝑣𝑖
𝐹

𝑣𝑖
𝐸

𝑣𝑖
𝐺

𝑣𝑖
𝐴

CPU 2

CPU 1

𝑣𝑖
𝐵

𝑣𝑖
𝐷

𝑣𝑖
𝐶

𝑣𝑖
𝐹

𝑣𝑖
𝐸

𝑣𝑖
𝐺

64

Federico Aromolo

Modeling partitioned parallel DAG tasks

• The scheduling behavior of a parallel task 𝜏𝑃 on a processor 𝑃𝑘 can be
captured by an EDD task 𝒫𝑘 𝜏𝑃

• Projection on processor 1:

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

CPU 1

CPU 2

𝑣𝑖
𝐴

𝑣𝑖
𝐵

𝑣𝑖
𝐶

𝑣𝑖
𝐷

𝑣𝑖
𝐹

𝑣𝑖
𝐸

𝑣𝑖
𝐺

65

Federico Aromolo

Modeling partitioned parallel DAG tasks

• The scheduling behavior of a parallel task 𝜏𝑃 on a processor 𝑃𝑘 can be
captured by an EDD task 𝒫𝑘 𝜏𝑃

• Projection on processor 1:

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

𝑣𝑖
𝑠

1) Task release
on processor 1

CPU 1

CPU 2

𝑣𝑖
𝐵

𝑣𝑖
𝐶

𝑣𝑖
𝐷

𝑣𝑖
𝐹

𝑣𝑖
𝐸

𝑣𝑖
𝐺𝑣𝑖

𝐴

66

Federico Aromolo

Modeling partitioned parallel DAG tasks

• The scheduling behavior of a parallel task 𝜏𝑃 on a processor 𝑃𝑘 can be
captured by an EDD task 𝒫𝑘 𝜏𝑃

• Projection on processor 1:

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

𝑣𝑖
𝐴 𝑣𝑖

𝐷 𝑣𝑖
𝐹𝑣𝑖

𝑠 0,0
𝑣𝑖
𝐺0,0 0,0 0,0

1) Task release
on processor 1

CPU 1

CPU 2

2) Reproduce
topology of nodes

on processor 1

𝑣𝑖
𝐵

𝑣𝑖
𝐶

𝑣𝑖
𝐷

𝑣𝑖
𝐹

𝑣𝑖
𝐸

𝑣𝑖
𝐺𝑣𝑖

𝐴

67

Federico Aromolo

Modeling partitioned parallel DAG tasks

• The scheduling behavior of a parallel task 𝜏𝑃 on a processor 𝑃𝑘 can be
captured by an EDD task 𝒫𝑘 𝜏𝑃

• Projection on processor 1:

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

𝑣𝑖
𝐴 𝑣𝑖

𝐷 𝑣𝑖
𝐹0,0

𝑣𝑖
𝐺0,0 0,0 0,0

𝑣𝑖
𝑠

1) Task release
on processor 1

2) Reproduce
topology of nodes

on processor 1

CPU 1

CPU 2

3) Represent edges from nodes
assigned to other processors with

an edge from the source node

𝑣𝑖
𝐴 𝑣𝑖

𝐶

𝑣𝑖
𝐷

𝑣𝑖
𝐹

𝑣𝑖
𝐸

𝑣𝑖
𝐺

𝑣𝑖
𝐵

68

Federico Aromolo

𝑣𝑖
𝐴 𝑣𝑖

𝐷 𝑣𝑖
𝐹𝑣𝑖

𝑠 0,0

0,max 𝑅𝑖
𝐵 , 𝑅𝑖

𝐶

0, 𝑅𝑖
𝐸

𝑣𝑖
𝐺0,0 0,0 0,0

Modeling partitioned parallel DAG tasks

• The scheduling behavior of a parallel task 𝜏𝑃 on a processor 𝑃𝑘 can be
captured by an EDD task 𝒫𝑘 𝜏𝑃

• Projection on processor 1:

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

1) Task release
on processor 1

3) Represent edges from nodes
assigned to other processors with

an edge from the source node

4) Set max. delay equal
to the max. WCRT among

the predecessors

CPU 1

CPU 2

2) Reproduce
topology of nodes

on processor 1

𝑣𝑖
𝐴 𝑣𝑖

𝐶

𝑣𝑖
𝐷

𝑣𝑖
𝐹

𝑣𝑖
𝐸

𝑣𝑖
𝐺

𝑣𝑖
𝐵

69

Federico Aromolo

Modeling partitioned parallel DAG tasks

• The scheduling behavior of a parallel task 𝜏𝑃 on a processor 𝑃𝑘 can be
captured by an EDD task 𝒫𝑘 𝜏𝑃

• Projection on processor 2:

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

CPU 1

CPU 2

𝑣𝑖
𝐵 𝑣𝑖

𝐸

𝑣𝑖
𝑠

0, 𝑅𝑖
𝐴

𝑣𝑖
𝐶

0, 𝑅𝑖
𝐴

0,0

𝑣𝑖
𝐴

𝑣𝑖
𝐵

𝑣𝑖
𝐶

𝑣𝑖
𝐷

𝑣𝑖
𝐹

𝑣𝑖
𝐸

𝑣𝑖
𝐺

70

Federico Aromolo

Modeling partitioned parallel DAG tasks

• Result: a partitioned parallel task 𝜏𝑃 can be modeled by a set of EDD
tasks (one for each processor 𝑃𝑘) for the purpose of real-time analysis

• Note: the WCRTs on the edges introduce circular dependencies

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

𝒫2(𝜏
𝑃)

𝒫1(𝜏
𝑃)

𝑣𝑖
𝐵 𝑣𝑖

𝐸

𝑣𝑖
𝑠

0, 𝑅𝑖
𝐴

𝑣𝑖
𝐶

0, 𝑅𝑖
𝐴

0,0

𝑣𝑖
𝐴 𝑣𝑖

𝐷 𝑣𝑖
𝐹𝑣𝑖

𝑠 0,0

0,max 𝑅𝑖
𝐵, 𝑅𝑖

𝐶

0, 𝑅𝑖
𝐸

𝑣𝑖
𝐺0,0 0,0 0,0

Projection on CPU 1

Projection on CPU 2
CPU 1

CPU 2

𝑣𝑖
𝐴

𝑣𝑖
𝐵

𝑣𝑖
𝐶

𝑣𝑖
𝐷

𝑣𝑖
𝐹

𝑣𝑖
𝐸

𝑣𝑖
𝐺

𝜏𝑃

71

Federico Aromolo

Analysis of partitioned parallel DAG tasks

• Closed-form: the EDD projections on each processor are constructed
by exploring the DAG of the parallel task in topological order
• The node-level RTA for EDD tasks is used to obtain a WCRT UB for each node

• This works around the circular dependencies due to the WCRTs on the edges

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

𝒫2(𝜏
𝑃)

𝒫1(𝜏
𝑃)PAR to EDD

Generate projections
on each processor

Analyze nodes in
topological order

EDD RTA
ത𝑅𝑖𝑣𝑖

𝐴

𝑣𝑖
𝐵

𝑣𝑖
𝐶

𝑣𝑖
𝐷

𝑣𝑖
𝐹

𝑣𝑖
𝐸

𝑣𝑖
𝐺

𝜏𝑃

72

Federico Aromolo

Analysis of partitioned parallel DAG tasks

• Optimization-based: the proposed EDD MILP analysis can be applied
to each projection to improve upon the obtained WCRT bounds

• A specialized MILP formulation is also presented to analyze all the
projections simultaneously

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

𝒫2(𝜏
𝑃)

𝒫1(𝜏
𝑃)PAR to EDD

Generate projections
on each processor

Analyze nodes in
topological order

EDD RTA
ത𝑅𝑖𝑣𝑖

𝐴

𝑣𝑖
𝐵

𝑣𝑖
𝐶

𝑣𝑖
𝐷

𝑣𝑖
𝐹

𝑣𝑖
𝐸

𝑣𝑖
𝐺

𝜏𝑃

Per-projection
or simultaneous

MILP RTA
ത𝑅𝑖
𝑂𝑃𝑇𝐼 ≤ ത𝑅𝑖

73

Federico Aromolo

Experiments on parallel tasks

• Experiments: comparison of partitioned scheduling (analyzed with
EDD tasks) and federated scheduling of parallel tasks on a
multiprocessor platform

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

𝜏1
𝑃

𝜏2
𝑃

𝜏3
𝑃

𝜏4
𝑃

Task set

Multiprocessor
platform

Core 3 Core 4

Core 2Core 1

74

Federico Aromolo

Experiments on parallel tasks

• Federated scheduling [Li et al., 2014]:
• 1. Each heavy task (𝑈𝑖 ≥ 1) is assigned a set of dedicated processors, where it

is scheduled by a global scheduler

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

𝜏1
𝑃

𝜏2
𝑃

𝜏3
𝑃

𝜏4
𝑃

Task set

𝑈1 < 1

𝑈2 < 1

𝑈3 ≥ 1

𝑈4 < 1 Multiprocessor
platform

Core 3 Core 4

Core 2Core 1

Global
scheduler

75

Federico Aromolo

Experiments on parallel tasks

• Federated scheduling [Li et al., 2014]:
• 2. Light tasks (𝑈𝑖 < 1) are treated as sequential tasks and partitioned on the

remaining processors, where they are scheduled with a uniprocessor policy

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

𝜏1
𝑃

𝜏2
𝑃

𝜏3
𝑃

𝜏4
𝑃

Task set

Global
scheduler

Partitioned
scheduler

Multiprocessor
platform

Core 3 Core 4

Core 2Core 1

𝑈1 < 1

𝑈2 < 1

𝑈3 ≥ 1

𝑈4 < 1

76

Federico Aromolo

Experiments on parallel tasks

• Partitioned scheduling:
• 1. Each node is assigned to a specific processor according to a partitioning

algorithm

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

𝜏1
𝑃

𝜏2
𝑃

𝜏3
𝑃

𝜏4
𝑃

Task set

Partitioning
algorithm Multiprocessor

platform

Core 3 Core 4

Core 2Core 1

77

Federico Aromolo

Experiments on parallel tasks

• Partitioned scheduling:
• 2. Each processor schedules nodes according to a uniprocessor policy

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

Partitioning
algorithm

Uniprocessor
scheduling

on each core

𝜏1
𝑃

𝜏2
𝑃

𝜏3
𝑃

𝜏4
𝑃

Task set

Multiprocessor
platform

Core 3 Core 4

Core 2Core 1

78

Federico Aromolo

Experiments on parallel tasks

• Partitioned scheduling:
• 3. Once partitioned, the parallel tasks are analyzed by means of EDD tasks

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

Partitioning
algorithm

Uniprocessor
scheduling

on each core

EDD-based
analysis

𝜏1
𝑃

𝜏2
𝑃

𝜏3
𝑃

𝜏4
𝑃

Task set

Multiprocessor
platform

Core 3 Core 4

Core 2Core 1

79

Federico Aromolo

Experiments on parallel tasks

• Basic partitioning algorithm considered in the experiments:
• WBF: nodes are sorted by decreasing utilization, and allocated to a processor

according to worst-fit, best-fit, or first-fit bin packing heuristics, verifying that
processor utilization does not exceed one

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

Uniprocessor
scheduling

on each core

EDD-based
analysis

Bin packing
heuristics

𝜏1
𝑃

𝜏2
𝑃

𝜏3
𝑃

𝜏4
𝑃

Task set

Multiprocessor
platform

Core 3 Core 4

Core 2Core 1

80

Federico Aromolo

Experiments on parallel tasks

• Specialized partitioning algorithms inspired by federated scheduling:
• Pseudo-federated (P-FED): like federated scheduling, but heavy tasks are

scheduled with partitioned scheduling on the assigned processors

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

𝜏1
𝑃

𝜏2
𝑃

𝜏3
𝑃

𝜏4
𝑃

Task set

𝑈1 < 1

𝑈2 < 1

𝑈3 ≥ 1

𝑈4 < 1 Multiprocessor
platform

Core 3 Core 4

Core 2Core 1

Partitioned
scheduler

Partitioned
scheduler

81

Federico Aromolo

Experiments on parallel tasks

• Specialized partitioning algorithms inspired by federated scheduling:
• Pseudo-federated++ (P-FED++): improves upon P-FED with additional ways to

allocate tasks in case a feasible allocation is not found

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

𝜏1
𝑃

𝜏2
𝑃

𝜏3
𝑃

𝜏4
𝑃

Task set

𝑈1 < 1

𝑈2 < 1

𝑈3 ≥ 1

𝑈4 < 1 Multiprocessor
platform

Core 3 Core 4

Core 2Core 1

Partitioned
scheduler

Partitioned
scheduler

82

Federico Aromolo

Experiments on parallel tasks

• Specialized partitioning algorithms inspired by federated scheduling:
• Pseudo-federated++ (P-FED++): improves upon P-FED with additional ways to

allocate tasks in case a feasible allocation is not found

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

𝜏1
𝑃

𝜏2
𝑃

𝜏3
𝑃

𝜏4
𝑃

Task set

𝑈1 < 1

𝑈2 < 1

𝑈3 ≥ 1

𝑈4 < 1 Multiprocessor
platform

Core 3 Core 4

Core 2Core 1

Partitioned
scheduler

Partitioned
scheduler

Heavy task not feasible:

83

Federico Aromolo

Experiments on parallel tasks

• Specialized partitioning algorithms inspired by federated scheduling:
• Pseudo-federated++ (P-FED++): improves upon P-FED with additional ways to

allocate tasks in case a feasible allocation is not found

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

𝜏1
𝑃

𝜏2
𝑃

𝜏3
𝑃

𝜏4
𝑃

Task set

𝑈1 < 1

𝑈2 < 1

𝑈3 ≥ 1

𝑈4 < 1

Partitioned
scheduler

Partitioned
scheduler

Multiprocessor
platform

Core 3 Core 4

Core 2Core 1

Heavy task not feasible:
increment the number of

dedicated cores

84

Federico Aromolo

Experiments on parallel tasks

• Specialized partitioning algorithms inspired by federated scheduling:
• Pseudo-federated++ (P-FED++): improves upon P-FED with additional ways to

allocate tasks in case a feasible allocation is not found

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

𝜏1
𝑃

𝜏2
𝑃

𝜏3
𝑃

𝜏4
𝑃

Task set

𝑈1 < 1

𝑈2 < 1

𝑈3 ≥ 1

𝑈4 < 1

Partitioned
scheduler

Partitioned
scheduler

Heavy task not feasible:
increment the number of

dedicated cores

Light task not feasible:Multiprocessor
platform

Core 3 Core 4

Core 2Core 1

85

Federico Aromolo

Experiments on parallel tasks

• Specialized partitioning algorithms inspired by federated scheduling:
• Pseudo-federated++ (P-FED++): improves upon P-FED with additional ways to

allocate tasks in case a feasible allocation is not found

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

𝜏1
𝑃

𝜏2
𝑃

𝜏3
𝑃

𝜏4
𝑃

Task set

𝑈1 < 1

𝑈2 < 1

𝑈3 ≥ 1

𝑈4 < 1

Partitioned
scheduler

Partitioned
scheduler

Heavy task not feasible:
increment the number of

dedicated cores

Light task not feasible:
partition its nodes among all

the processors

Multiprocessor
platform

Core 3 Core 4

Core 2Core 1

86

Federico Aromolo

• Comparison of federated scheduling (FED-WBF) and partitioned scheduling
• Schedulability ratio over randomly generated DAG tasks (Melani et al., 2015)

• PAR-FEAS: schedulability limit

Experiments on parallel tasks

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

8 processors, 10 tasks, 𝑇𝑖 ∈ 100,1000

87

Federico Aromolo

• Comparison of federated scheduling (FED-WBF) and partitioned scheduling
• Schedulability ratio over randomly generated DAG tasks (Melani et al., 2015)

• PAR-FEAS: schedulability limit

Experiments on parallel tasks

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

Similar performance
for federated and
pseudo-federated

8 processors, 10 tasks, 𝑇𝑖 ∈ 100,1000

88

Federico Aromolo

• Comparison of federated scheduling (FED-WBF) and partitioned scheduling
• Schedulability ratio over randomly generated DAG tasks (Melani et al., 2015)

• PAR-FEAS: schedulability limit

Experiments on parallel tasks

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

P-FED++ significantly
improves upon EDD-
WBF and federated

scheduling
Similar performance

for federated and
pseudo-federated

8 processors, 10 tasks, 𝑇𝑖 ∈ 100,1000

89

Federico Aromolo

• Comparison of federated scheduling (FED-WBF) and partitioned scheduling
• Schedulability ratio over randomly generated DAG tasks (Melani et al., 2015)

• PAR-FEAS: schedulability limit

Experiments on parallel tasks

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

8 processors, 10 tasks, 𝑇𝑖 ∈ 100,1000

The MILP approach
shows significant

improvement over
the closed-form

analysis

P-FED++ significantly
improves upon EDD-
WBF and federated

scheduling
Similar performance

for federated and
pseudo-federated

90

Federico Aromolo

16 processors, 20 tasks, 𝑇𝑖 ∈ 100,1000

Experiments on parallel tasks

• Similar results are observed for other system configurations, with
even larger performance gaps

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

32 processors, 40 tasks, 𝑇𝑖 ∈ 100,1000

91

Federico Aromolo

Conclusions

• The EDD task model was proposed to explicitly deal with complex
computing workloads that incur event-related delays

• Applications include:
• Analysis of asynchronous HW acceleration
• Analysis of partitioned parallel tasks on multicores
• Generalization of other task models

• Two response time analysis techniques were proposed
• The optimization approach was shown to generally improve upon the closed-

form approach, especially in the experiments on parallel tasks

• Partitioned scheduling of parallel tasks analyzed by means of EDD
tasks was shown to significantly outperform federated scheduling,
without the need for global scheduling

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks 92

Federico Aromolo

Future work

• Evaluate the applicability of the EDD model to other kinds of
workloads
• Inference of Deep Neural Networks (DNN) on GPU- and FPGA-based

heterogeneous platforms

• Multiprocessor version of FRED with support for asynchronous HW
acceleration

• Devise a suitable MILP analysis for EDF scheduling of EDD tasks

• Explore additional partitioning approaches for parallel tasks

• Investigate possible applications of semi-partitioning of nodes on
multiprocessors

• Investigate the analysis of locking protocols in parallel task models

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks 93

Federico Aromolo

Publication

• Publication describing the EDD modeling and analysis framework:
• F. Aromolo, A. Biondi, G. Nelissen, and G. Buttazzo, “Event-Driven Delay-

Induced Tasks: Model, Analysis, and Applications,” In Proceedings of the
27th IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS 2021)

94Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

Federico Aromolo

Related publications

• Publication proposing a response-time analysis for dynamic self-
suspending tasks under EDF based on a transformation to sporadic
tasks with jitter, applicable to the analysis of EDD tasks under EDF:
• F. Aromolo, A. Biondi, and G. Nelissen, “Response-Time Analysis for Self-

Suspending Tasks Under EDF Scheduling,” in Proceedings of the 34th
Euromicro Conference on Real-Time Systems (ECRTS 2022)

95Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

Model
transformation

Self-suspending tasks Sporadic tasks with jitter

Release jitter

Federico Aromolo

Related publications

• Publication proposing the Replication-Based Scheduling paradigm
for parallel tasks as a specialized alternative to partitioned, global,
and federated scheduling
• F. Aromolo, G. Nelissen, and A. Biondi, “Replication-Based Scheduling of

Parallel Real-Time Tasks,” in Proceedings of the 35th Euromicro Conference
on Real-Time Systems (ECRTS 2023)

96Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

𝑣1 𝑣7

𝑣6

𝑣7

𝑣7

𝑣7

𝑃1

𝑃2

𝑃3

𝑃4

𝑣3

𝑣3

𝑣3

𝑣2

𝑣4

𝑣5

𝑣1

𝑣6

𝑣7𝑣3

𝑣2

𝑣4

𝑣5

𝑣1 𝑣2

𝑣4

𝑣5

𝑣6

𝑣3

𝑣7

X

X

X

𝑃1

𝑃2

𝑃3

𝑃4

Parallel task Allocation Scheduling

Federico Aromolo

References
• F. Aromolo, A. Biondi, G. Nelissen, and G. Buttazzo, “Event-Driven Delay-Induced Tasks: Model, Analysis, and

Applications,” In Proceedings of the 27th IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS 2021), May 18-21, 2021.

• A. Burns, R. Davis, P. Wang, and F. Zhang, “Partitioned EDF scheduling for multiprocessors using a C=D
scheme,” in Proceedings of the 18th International Conference on Real-Time and Network Systems (RTNS
2010), 2010, pp. 169–178.

• B. B. Brandenburg and M. Gül, “Global scheduling not required: Simple, near-optimal multiprocessor real-
time scheduling with semi-partitioned reservations,” in Proceedings of the 37th IEEE Real-Time Systems
Symposium (RTSS 2016). IEEE, 2016, pp. 99–110.

• A. Biondi, A. Balsini, M. Pagani, E. Rossi, M. Marinoni, and G. Buttazzo, “A framework for supporting real-time
applications on dynamic reconfigurable FPGAs,” in Proceedings of the 37th IEEE Real-Time Systems
Symposium (RTSS 2016). IEEE, 2016, pp. 1–12.

• J.-J. Chen, G. Nelissen, and W.-H. Huang, “A unifying response time analysis framework for dynamic self-
suspending tasks,” in Proceedings of the 28th Euromicro Conference on Real-Time Systems (ECRTS 2016).
IEEE, 2016, pp. 61–71.

• A. Melani, M. Bertogna, V. Bonifaci, A. Marchetti-Spaccamela, and G. C. Buttazzo, “Response-time analysis of
conditional DAG tasks in multiprocessor systems,” in Proceedings of the 27th Euromicro Conference on Real-
Time Systems (ECRTS 2015). IEEE, 2015, pp. 211–221.

• J. Li, J.-J. Chen, K. Agrawal, C. Lu, C. Gill, and A. Saifullah, “Analysis of federated and global scheduling for
parallel real-time tasks,” in Proceedings of the 26th Euromicro Conference on Real-Time Systems (ECRTS
2014). IEEE, 2014, pp. 85–96.

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks 97

Federico Aromolo

Timing Analysis of Parallel and
Accelerated Software with
Event-Driven Delay-Induced Tasks
Federico Aromolo

Scuola Superiore Sant’Anna, Pisa, Italy

CAPITAL Workshop 2024: Scalable and Precise Timing Analysis for Multicore Platforms

June 14, 2024 – IRT Saint Exupéry, Toulouse, France

98Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

	Diapositiva 1: Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks
	Diapositiva 2: Real-Time Systems Laboratory
	Diapositiva 3: Heterogeneous computing platforms
	Diapositiva 4: Heterogeneous computing platforms
	Diapositiva 5: Parallel task models
	Diapositiva 6: Parallel task models
	Diapositiva 7: Parallel task models
	Diapositiva 8: Scheduling paradigms for parallel tasks
	Diapositiva 9: Scheduling paradigms for parallel tasks
	Diapositiva 10: Scheduling paradigms for parallel tasks
	Diapositiva 11: Scheduling paradigms for parallel tasks
	Diapositiva 12: Scheduling paradigms for parallel tasks
	Diapositiva 13: Scheduling paradigms for parallel tasks
	Diapositiva 14: Scheduling paradigms for parallel tasks
	Diapositiva 15: Scheduling paradigms for parallel tasks
	Diapositiva 16: Hardware acceleration
	Diapositiva 17: Self-suspending tasks
	Diapositiva 18: Self-suspending tasks
	Diapositiva 19: Hardware acceleration
	Diapositiva 20: Event-related delays
	Diapositiva 21: Event-related delays
	Diapositiva 22: EDD task model
	Diapositiva 23: Contributions
	Diapositiva 24: EDD task model
	Diapositiva 25: EDD task model
	Diapositiva 26: EDD task model
	Diapositiva 27: EDD task model
	Diapositiva 28: EDD task model
	Diapositiva 29: EDD task model
	Diapositiva 30: EDD task model
	Diapositiva 31: Example schedule
	Diapositiva 32: Example schedule
	Diapositiva 33: Example schedule
	Diapositiva 34: Example schedule
	Diapositiva 35: Example schedule
	Diapositiva 36: Example schedule
	Diapositiva 37: Example schedule
	Diapositiva 38: Example schedule
	Diapositiva 39: Example schedule
	Diapositiva 40: Analysis for EDD tasks
	Diapositiva 41: Closed-form analysis
	Diapositiva 42: Closed-form analysis
	Diapositiva 43: Closed-form analysis
	Diapositiva 44: Closed-form analysis
	Diapositiva 45: Optimization-based analysis
	Diapositiva 46: RTA comparison
	Diapositiva 47: Generalization of other task models
	Diapositiva 48: Generalization of other task models
	Diapositiva 49: Generalization of other task models
	Diapositiva 50: Generalization of other task models
	Diapositiva 51: Generalization of other task models
	Diapositiva 52: Generalization of other task models
	Diapositiva 53: Modeling asynchronous GPU acceleration
	Diapositiva 54: Modeling asynchronous GPU acceleration
	Diapositiva 55: Modeling asynchronous GPU acceleration
	Diapositiva 56: Modeling asynchronous GPU acceleration
	Diapositiva 57: Modeling asynchronous GPU acceleration
	Diapositiva 58: Modeling FPGA hardware acceleration
	Diapositiva 59: Modeling FPGA hardware acceleration
	Diapositiva 60: Modeling FPGA hardware acceleration
	Diapositiva 61: Modeling FPGA hardware acceleration
	Diapositiva 62: Modeling FPGA hardware acceleration
	Diapositiva 63: Modeling partitioned parallel DAG tasks
	Diapositiva 64: Modeling partitioned parallel DAG tasks
	Diapositiva 65: Modeling partitioned parallel DAG tasks
	Diapositiva 66: Modeling partitioned parallel DAG tasks
	Diapositiva 67: Modeling partitioned parallel DAG tasks
	Diapositiva 68: Modeling partitioned parallel DAG tasks
	Diapositiva 69: Modeling partitioned parallel DAG tasks
	Diapositiva 70: Modeling partitioned parallel DAG tasks
	Diapositiva 71: Modeling partitioned parallel DAG tasks
	Diapositiva 72: Analysis of partitioned parallel DAG tasks
	Diapositiva 73: Analysis of partitioned parallel DAG tasks
	Diapositiva 74: Experiments on parallel tasks
	Diapositiva 75: Experiments on parallel tasks
	Diapositiva 76: Experiments on parallel tasks
	Diapositiva 77: Experiments on parallel tasks
	Diapositiva 78: Experiments on parallel tasks
	Diapositiva 79: Experiments on parallel tasks
	Diapositiva 80: Experiments on parallel tasks
	Diapositiva 81: Experiments on parallel tasks
	Diapositiva 82: Experiments on parallel tasks
	Diapositiva 83: Experiments on parallel tasks
	Diapositiva 84: Experiments on parallel tasks
	Diapositiva 85: Experiments on parallel tasks
	Diapositiva 86: Experiments on parallel tasks
	Diapositiva 87: Experiments on parallel tasks
	Diapositiva 88: Experiments on parallel tasks
	Diapositiva 89: Experiments on parallel tasks
	Diapositiva 90: Experiments on parallel tasks
	Diapositiva 91: Experiments on parallel tasks
	Diapositiva 92: Conclusions
	Diapositiva 93: Future work
	Diapositiva 94: Publication
	Diapositiva 95: Related publications
	Diapositiva 96: Related publications
	Diapositiva 97: References
	Diapositiva 98: Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

