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• The Real-Time Systems Laboratory 
(RETIS Lab) is part of the TeCIP Institute 
of Scuola Superiore Sant’Anna – Pisa, 
Italy
• Approx. 40 people

• Main topics:
• Embedded real-time systems
• Time-critical scheduling algorithms
• Advanced operating systems
• Adaptive resource management
• System-level cyber-security
• Safe and secure machine learning
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Heterogeneous computing platforms

• Emerging industry trend in the field of real-time embedded systems: 
integrate multiple functionalities onto a single computing platform

• Heterogeneous platforms combine scalar multicores and HW accelerators
• E.g., FPGAs, GPUs, DSPs, AI engines, …
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Heterogeneous computing platforms

• The typical software workload exploits the available platform 
capabilities with complex execution patterns:
• Parallel computation on multiprocessors
• Hardware acceleration requests
• Data dependencies and shared resources
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Parallel task models

• There are different forms of sporadic parallel tasks, representing the 
internal parallelism of each task in addition to the inter-task 
parallelism inherent to multitasking

• Multi-threaded parallel task models:
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Fork-join Directed Acyclic 
Graph (DAG)

Synchronous parallel
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Parallel task models

• An important application of DAG parallel tasks is modeling and analyzing 
the structure and scheduling behavior of OpenMP parallel software
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From: Vargas et al. – “OpenMP and Timing Predictability: A Possible Union?” - 2015

Program code Program structure DAG model Timing analysis
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Parallel task models

• In the real-time sporadic parallel DAG model, each task 𝜏𝑖:

1. Is released sporadically with minimum period 𝑇𝑖
2. Is subject to a deadline 𝐷𝑖 ≤ 𝑇𝑖
3. Is structured as a directed acyclic graph (DAG)
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Scheduling paradigms for parallel tasks

• Different scheduling paradigms exist to allocate and schedule 
subtasks on the cores of a multiprocessor platform
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Scheduling paradigms for parallel tasks

• Partitioned scheduling:

1. At design time, each node is statically allocated to a specific processor

2. At runtime, nodes are scheduled on the corresponding processor with a 
uniprocessor policy
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Scheduling paradigms for parallel tasks

• Advantage: uniprocessor scheduling and analysis techniques can be 
reused

• Disadvantage: requires solving a complex allocation problem at 
design time (typically approached with bin-packing heuristics)
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Scheduling paradigms for parallel tasks

• Global scheduling: each subtask can execute on any one of the 
processors available at a given time, according to their priority level

• Advantage: flexible runtime behavior with automatic load balancing

• Disadvantages: significant overheads due to migration; complex 
WCET analysis
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Scheduling paradigms for parallel tasks

• Federated scheduling: hybrid approach
• 1. Each heavy task (𝑈𝑖 ≥ 1) is assigned a set of dedicated processors, where it 

is scheduled in isolation by a global scheduler

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

𝜏1

𝜏2

𝜏3

𝜏4

Task set

𝑈1 < 1

𝑈2 < 1

𝑈3 ≥ 1

𝑈4 < 1 Multiprocessor 
platform

Core 3 Core 4

Core 2Core 1

Global 
scheduler

12



Federico Aromolo

Scheduling paradigms for parallel tasks

• Federated scheduling: hybrid approach
• 2. Light tasks (𝑈𝑖 < 1) are treated as sequential tasks and partitioned on the 

remaining processors, where they are scheduled with a uniprocessor policy

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

𝜏1

𝜏2

𝜏3

𝜏4

Task set

Global 
scheduler

Uniprocessor 
scheduler

Multiprocessor 
platform

Core 3 Core 4

Core 2Core 1

𝑈1 < 1

𝑈2 < 1

𝑈3 ≥ 1

𝑈4 < 1
Partitioning

13



Federico Aromolo

Scheduling paradigms for parallel tasks

• Advantage: simple and efficient analysis

• Disadvantage: processors dedicated to a heavy task can be underutilized
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Scheduling paradigms for parallel tasks

• Partitioned scheduling:
• Practical advantages in the implementation

• Fine-grained control of memory contention and tight blocking bounds in the 
presence of locking

• Design-time complexity can be approached with specialized bin packing heuristics

• Empirical evaluations of C=D semi-partitioned EDF scheduling of sequential 
tasks showed 99%+ schedulable utilization on multiprocessors (Burns et al. 
2012, Brandenburg and Gül 2016)
• C=D semi-partitioned scheduling is a simple and practical approach, as opposed to 

complex optimal global scheduling algorithms, which incur significant overheads

• However, a specialized and effective analysis for partitioned parallel tasks 
is still missing
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Hardware acceleration

• Another form of parallelism is due to hardware acceleration

• Synchronous hardware acceleration: when offloading computation 
to the accelerator, the task must wait for the completion of the 
acceleration before proceeding
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Self-suspending tasks

• Since acceleration delays may be significant, the typical 
implementation involves a self-suspending behavior

• The self-suspending task model was introduced to deal with self-
suspending behaviors in the real-time analysis
• E.g., hardware acceleration, locking protocols, inter-processor synchronization
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Self-suspending tasks

• Under the dynamic self-suspending task model, each task 𝜏𝑖:

1. Is released sporadically with minimum period 𝑇𝑖
2. Is subject to a deadline 𝐷𝑖 ≤ 𝑇𝑖
3. Alternates an arbitrary number of execution and suspension phases 

up to a cumulative WCET 𝐶𝑖 and a cumulative suspension time 𝑆𝑖
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Hardware acceleration

• Asynchronous hardware acceleration: after offloading computation 
to the accelerator, the task can continue executing on the processor 
before waiting for the completion of the acceleration

• Self-suspending task models do not explicitly support asynchronous 
hardware acceleration
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Event-related delays

• Asynchronous HW acceleration and partitioned scheduling of parallel 
tasks share a common scheduling pattern in which the task must wait 
for an asynchronous event, thus incurring event-related delays
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Event-related delays

• Asynchronous HW acceleration and partitioned scheduling of parallel 
tasks share a common scheduling pattern in which the task must wait 
for an asynchronous event, thus incurring event-related delays
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EDD task model

• Existing techniques either deal with event-related delays with 
considerable analytical pessimism, or can only support specific types 
of workloads

• Contribution: definition of the event-driven delay-induced (EDD) 
task model, which explicitly deals with complex computing workloads 
incurring event-related delays
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Contributions

• Event-driven delay-induced (EDD) task model:
• Explicitly deals with complex computing workloads that incur event-related delays

• Analysis techniques: closed-form and optimization-based
• Applications:

• Modeling of asynchronous hardware acceleration
• Analysis of partitioned parallel DAG tasks on multicores
• Generalization of existing task models
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EDD task model

• Preemptive execution on a single processor

• Each EDD task 𝜏𝑖 in a task set 𝜏:
• is released with a minimum inter-arrival time 𝑇𝑖
• must complete within a deadline 𝐷𝑖 ≤ 𝑇𝑖
• is scheduled with fixed priorities 𝜋𝑖
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EDD task model

• The workload of a task is described by a directed acyclic graph (DAG) 𝐺𝑖
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EDD task model

• The workload of a task is described by a directed acyclic graph (DAG) 𝐺𝑖
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EDD task model

• The workload of a task is described by a directed acyclic graph (DAG) 𝐺𝑖
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EDD task model

• The workload of a task is described by a directed acyclic graph (DAG) 𝐺𝑖
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EDD task model

• Precedence constraint: satisfied once a variable delay has elapsed 
after the completion of the predecessor node
• Models bounded delays related to task release or subtask completion events

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

𝑣𝑖
𝐴 𝑣𝑖

𝐵
𝑤𝑖
𝐴,𝐵 ∈ 0,2

Min/max delay length

𝑣𝑖
𝑠 𝑣𝑖

𝐴 𝑣𝑖
𝐶 𝑣𝑖

𝐸

𝑣𝑖
𝐷

𝑣𝑖
𝐵

0
0,0

0,2

1,2

0,1 1,2

0,2

1 2 1

2

1

29



Federico Aromolo

EDD task model

• All subtasks are released simultaneously at task release, but cannot 
execute until the incoming precedence constraints are satisfied

• If no subtask is ready for execution, the task is suspended

Timing Analysis of Parallel and Accelerated Software with Event-Driven Delay-Induced Tasks

𝜏𝑖 = 𝐺𝑖 , 𝑇𝑖 , 𝐷𝑖 , 𝜋𝑖

𝑣𝑖
𝑠 𝑣𝑖

𝐴 𝑣𝑖
𝐶 𝑣𝑖

𝐸

𝑣𝑖
𝐷

𝑣𝑖
𝐵

0
0,0

0,2

1,2

0,1 1,2

0,2

1 2 1

2

1

30



Federico Aromolo

Example schedule
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Example schedule

Interference from 
higher-priority task 𝜏𝑝

𝑣𝑖
𝑠 𝑣𝑖

𝐴 𝑣𝑖
𝐶 𝑣𝑖
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0
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𝐷

Event-related delay

𝑤𝑖
𝐴,𝐵 ∈ [0,2]

Suspension: no 
subtask is ready 

for execution
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Interference from 
higher-priority task 𝜏𝑝
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Event-related delay
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Suspension: no 
subtask is ready 

for execution
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Both precedence 
constraints satisfied
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Analysis for EDD tasks

• Problem: obtain a response time analysis (RTA) for an EDD task set
• Determine a worst-case response time (WCRT) upper bound ത𝑅𝑖 for each task
• Verify if all deadlines are guaranteed: ത𝑅𝑖 ≤ 𝐷𝑖  for each 𝜏𝑖

• Observation: the scheduling behavior on the processor alternates 
execution and suspension intervals
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Self-suspending 
behavior
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Closed-form analysis

• Dynamic self-suspending (DSS) tasks alternate execution and suspension 
phases up to a cumulative WCET 𝐶𝑖 and a cumulative suspension time 𝑆𝑖

• Theorem: the timing behavior of an EDD task can be safely modeled by a 
DSS task with
• WCET equal to the sum of the WCETs of all DAG nodes
• Maximum suspension time equal to the maximum delay encountered over any path
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Closed-form analysis

• Dynamic self-suspending (DSS) tasks alternate execution and suspension 
phases up to a cumulative WCET 𝐶𝑖 and a cumulative suspension time 𝑆𝑖

• Theorem: the timing behavior of an EDD task can be safely modeled by a 
DSS task with
• WCET equal to the sum of the WCETs of all DAG nodes
• Maximum suspension time equal to the maximum delay encountered over any path
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Closed-form analysis

• Dynamic self-suspending (DSS) tasks alternate execution and suspension 
phases up to a cumulative WCET 𝐶𝑖 and a cumulative suspension time 𝑆𝑖

• Theorem: the timing behavior of an EDD task can be safely modeled by a 
DSS task with
• WCET equal to the sum of the WCETs of all DAG nodes
• Maximum suspension time equal to the maximum delay encountered over any path
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Closed-form analysis

• The resulting DSS tasks can be analyzed by means of a DSS RTA [Chen et al., 
2016] to obtain WCRT upper bounds ത𝑅𝑖 for each task

• A node-level analysis is also presented to obtain WCRT UBs ത𝑅𝑖
𝑎 for each 

node 

• Pseudo-polynomial time complexity

• Note: the transformation is compatible with both FP and EDF scheduling
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Linear-time 
transformation

𝜏𝑖
𝐸𝐷𝐷

𝜏𝑖
𝐷𝑆𝑆 ത𝑅𝑖

Fixed-point iteration 
[Chen et al. 2016]

EDD to DSS DSS RTA
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Optimization-based analysis

• A mixed-integer linear programming (MILP) formulation is proposed 
to improve upon the WCRT UBs obtained with the closed-form RTA
• The MILP models a generic schedule for the task under analysis

• Objective function: maximize the response time among sink nodes

• Constraints: impose necessary conditions to exclude impossible schedules
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Linear-time 
transformation

𝜏𝑖
𝐸𝐷𝐷

𝜏𝑖
𝐷𝑆𝑆 ത𝑅𝑖

Fixed-point iteration 
[Chen et al. 2016]

EDD to DSS DSS RTA
ത𝑅𝑖
𝑂𝑃𝑇𝐼 ≤ ത𝑅𝑖

MILP RTA

MILP 
formulation

Maximize 𝑅𝑖 = max
𝑣𝑖
𝑎∈𝑠𝑖𝑛𝑘(𝐺𝑖)

𝑅𝑖
𝑎

such that ...
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RTA comparison

• Example: consider an EDD task 𝜏𝑖 with 𝑇𝑖 = 1000 executing in isolation
• The DSS-based RTA gives a WCRT UB of ത𝑅𝑖 = 900, since, in this case, 𝐶𝑖

′ = 400 and 𝑆𝑖
′ = 500

• The MILP-based RTA can more accurately account for the specific DAG topology, giving a 
WCRT UB of ത𝑅𝑖

𝑂𝑃𝑇𝐼 = 600

• In fact, nodes 𝑣𝑖
𝐵, 𝑣𝑖

𝐶  and 𝑣𝑖
𝐷 can execute even if the event triggering 𝑣𝑖

𝐸 has not yet occurred
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Generalization of other task models

• Sequential sporadic tasks with release jitter
• Sporadic release with jitter 𝐽 and WCET 𝐶
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𝐽

𝑇

𝐶

…
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Generalization of other task models

• Sequential sporadic tasks with release jitter
• Sporadic release with jitter 𝐽 and WCET 𝐶

• Can be represented with a node with WCET 𝐶, and an edge with label 0, 𝐽  
incoming from the source node
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Generalization of other task models

• Segmented self-suspending tasks
• Alternate executions and suspensions with a given pattern: 
𝐶1, 𝑆1, 𝐶2, 𝑆2, … , 𝐶𝑘

• 𝑆𝑗: worst-case suspension time between successive subtasks
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𝐶1 𝑆1 𝐶2 𝑆2 𝐶3

𝑇

…
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Generalization of other task models

• Segmented self-suspending tasks
• Alternate executions and suspensions with a given pattern: 
𝐶1, 𝑆1, 𝐶2, 𝑆2, … , 𝐶𝑘

• 𝑆𝑗: worst-case suspension time between successive subtasks
• Can be represented with a linear DAG with (0, 𝑆𝑗) labels on the edges
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Generalization of other task models

• Transactional tasks with offsets
• Collection of independent subtasks released with fixed offset Φ𝑗  and variable 

jitter 𝐽𝑗, relative to task release
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Generalization of other task models

• Transactional tasks with offsets
• Collection of independent subtasks released with fixed offset Φ𝑗  and variable 

jitter 𝐽𝑗, relative to task release
• Can be represented with one node for each subtask in the transaction, each 

connected to the source node with labels Φj, Φj + 𝐽𝑗
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Modeling asynchronous GPU acceleration

• Example: asynchronous GPU acceleration with NVIDIA CUDA Runtime API
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TASK(example)
{
    

}

GPU

0 2 4 62

CPU

time
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Modeling asynchronous GPU acceleration

• Example: asynchronous GPU acceleration with NVIDIA CUDA Runtime API
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TASK(example)
{
    <execute on the CPU (A)>

    // asynchronously launch GPU kernel
    gpu_kernel<<<blocks, threads>>>();

}

GPU

0 2 4 62

CPU A

time

gpu_kernel
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Modeling asynchronous GPU acceleration

• Example: asynchronous GPU acceleration with NVIDIA CUDA Runtime API
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TASK(example)
{
    <execute on the CPU (A)>

    // asynchronously launch GPU kernel
    gpu_kernel<<<blocks, threads>>>();

    // execute in parallel on the CPU
    <execute on the CPU (B)>

    // wait for kernel completion
    cudaDeviceSynchronize();

}

GPU

0 2 4 62

CPU BA

time

cudaDeviceSynchronizegpu_kernel
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Modeling asynchronous GPU acceleration

• Example: asynchronous GPU acceleration with NVIDIA CUDA Runtime API
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TASK(example)
{
    <execute on the CPU (A)>

    // asynchronously launch GPU kernel
    gpu_kernel<<<blocks, threads>>>();

    // execute in parallel on the CPU
    <execute on the CPU (B)>

    // wait for kernel completion
    cudaDeviceSynchronize();

   <execute on the CPU (C)>
}

C

GPU

0 2 4 62

CPU BA

time

cudaDeviceSynchronizegpu_kernel
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Modeling asynchronous GPU acceleration

• Example: asynchronous GPU acceleration with NVIDIA CUDA Runtime API

• Modeled by an EDD task with nodes representing CPU execution and an 
edge with delay given by the min/max response time of the GPU kernel
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TASK(example)
{
    <execute on the CPU (A)>

    // asynchronously launch GPU kernel
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Modeling FPGA hardware acceleration

• Example: FRED is a scheduling framework for time-predictable FPGA 
hardware acceleration [Biondi et al. 2016]
• The FPGA area is statically partitioned into slots of fixed size
• Software tasks can request the execution of FPGA-accelerated functions (hardware 

tasks)
• Dynamic partial reconfiguration (DPR) is leveraged to reconfigure the FPGA slots at 

runtime with different hardware tasks
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Modeling FPGA hardware acceleration

• The FRED framework enables predictable time multiplexing of 
FPGA resources to support sets of hardware tasks with total FPGA 
area requirements exceeding the physical area
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Modeling FPGA hardware acceleration

• Differently from GPU-based systems, the acceleration delays are 
decoupled from the software scheduling behavior, and can be upper 
bounded using a specialized timing analysis
• Predictable access to shared resources (FPGA slots and FPGA reconfiguration 

interface) is guaranteed by a specialized scheduling infrastructure
• The resulting suspension time is given by the sum of the resource contention delay, 

the slot reconfiguration time, and the execution time of the hardware task
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Modeling FPGA hardware acceleration

• In the overall timing analysis, software tasks are treated as segmented self-
suspending tasks to account for multiple acceleration requests from each task

• This allows modeling the timing behavior of synchronous HW acceleration
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Modeling FPGA hardware acceleration

• The current implementation of the FRED framework is compatible with both 
synchronous and asynchronous acceleration

• Applying the EDD task model to the FRED timing analysis allows capturing more 
complex behaviors, including asynchronous acceleration requests
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Modeling partitioned parallel DAG tasks

• Partitioned parallel DAG tasks:
• Workload represented by a DAG executing on a multiprocessor system

• Partitioned scheduling: each node is assigned to a specific processor
• Nodes are scheduled according to a preemptive, fixed-priority uniprocessor policy
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Modeling partitioned parallel DAG tasks

• Application: a partitioned parallel task can be modeled by a set of 
EDD tasks (one for each core) for the purpose of real-time analysis
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Modeling partitioned parallel DAG tasks

• The scheduling behavior of a parallel task 𝜏𝑃 on a processor 𝑃𝑘  can be 
captured by an EDD task 𝒫𝑘 𝜏𝑃

• Projection on processor 1:
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Modeling partitioned parallel DAG tasks

• The scheduling behavior of a parallel task 𝜏𝑃 on a processor 𝑃𝑘  can be 
captured by an EDD task 𝒫𝑘 𝜏𝑃

• Projection on processor 1:
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Modeling partitioned parallel DAG tasks

• The scheduling behavior of a parallel task 𝜏𝑃 on a processor 𝑃𝑘  can be 
captured by an EDD task 𝒫𝑘 𝜏𝑃

• Projection on processor 1:
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Modeling partitioned parallel DAG tasks

• The scheduling behavior of a parallel task 𝜏𝑃 on a processor 𝑃𝑘  can be 
captured by an EDD task 𝒫𝑘 𝜏𝑃

• Projection on processor 1:
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Modeling partitioned parallel DAG tasks

• The scheduling behavior of a parallel task 𝜏𝑃 on a processor 𝑃𝑘  can be 
captured by an EDD task 𝒫𝑘 𝜏𝑃

• Projection on processor 1:
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Modeling partitioned parallel DAG tasks

• The scheduling behavior of a parallel task 𝜏𝑃 on a processor 𝑃𝑘  can be 
captured by an EDD task 𝒫𝑘 𝜏𝑃

• Projection on processor 2:
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Modeling partitioned parallel DAG tasks

• Result: a partitioned parallel task 𝜏𝑃 can be modeled by a set of EDD 
tasks (one for each processor 𝑃𝑘) for the purpose of real-time analysis

• Note: the WCRTs on the edges introduce circular dependencies
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Analysis of partitioned parallel DAG tasks

• Closed-form: the EDD projections on each processor are constructed 
by exploring the DAG of the parallel task in topological order
• The node-level RTA for EDD tasks is used to obtain a WCRT UB for each node

• This works around the circular dependencies due to the WCRTs on the edges
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Analysis of partitioned parallel DAG tasks

• Optimization-based: the proposed EDD MILP analysis can be applied 
to each projection to improve upon the obtained WCRT bounds

• A specialized MILP formulation is also presented to analyze all the 
projections simultaneously
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Experiments on parallel tasks

• Experiments: comparison of partitioned scheduling (analyzed with 
EDD tasks) and federated scheduling of parallel tasks on a 
multiprocessor platform
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Experiments on parallel tasks

• Federated scheduling [Li et al., 2014]:
• 1. Each heavy task (𝑈𝑖 ≥ 1) is assigned a set of dedicated processors, where it 

is scheduled by a global scheduler
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Experiments on parallel tasks

• Federated scheduling [Li et al., 2014]:
• 2. Light tasks (𝑈𝑖 < 1) are treated as sequential tasks and partitioned on the 

remaining processors, where they are scheduled with a uniprocessor policy
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Experiments on parallel tasks

• Partitioned scheduling:
• 1. Each node is assigned to a specific processor according to a partitioning 

algorithm
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Experiments on parallel tasks

• Partitioned scheduling:
• 2. Each processor schedules nodes according to a uniprocessor policy
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Experiments on parallel tasks

• Partitioned scheduling:
• 3. Once partitioned, the parallel tasks are analyzed by means of EDD tasks
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Experiments on parallel tasks

• Basic partitioning algorithm considered in the experiments:
• WBF: nodes are sorted by decreasing utilization, and allocated to a processor 

according to worst-fit, best-fit, or first-fit bin packing heuristics, verifying that 
processor utilization does not exceed one
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Experiments on parallel tasks

• Specialized partitioning algorithms inspired by federated scheduling:
• Pseudo-federated (P-FED): like federated scheduling, but heavy tasks are 

scheduled with partitioned scheduling on the assigned processors
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Experiments on parallel tasks

• Specialized partitioning algorithms inspired by federated scheduling:
• Pseudo-federated++ (P-FED++): improves upon P-FED with additional ways to 

allocate tasks in case a feasible allocation is not found
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Experiments on parallel tasks

• Specialized partitioning algorithms inspired by federated scheduling:
• Pseudo-federated++ (P-FED++): improves upon P-FED with additional ways to 

allocate tasks in case a feasible allocation is not found
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Experiments on parallel tasks

• Specialized partitioning algorithms inspired by federated scheduling:
• Pseudo-federated++ (P-FED++): improves upon P-FED with additional ways to 

allocate tasks in case a feasible allocation is not found
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Experiments on parallel tasks

• Specialized partitioning algorithms inspired by federated scheduling:
• Pseudo-federated++ (P-FED++): improves upon P-FED with additional ways to 

allocate tasks in case a feasible allocation is not found
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Experiments on parallel tasks

• Specialized partitioning algorithms inspired by federated scheduling:
• Pseudo-federated++ (P-FED++): improves upon P-FED with additional ways to 

allocate tasks in case a feasible allocation is not found
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• Comparison of federated scheduling (FED-WBF) and partitioned scheduling
• Schedulability ratio over randomly generated DAG tasks (Melani et al., 2015)

• PAR-FEAS: schedulability limit

Experiments on parallel tasks
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• Comparison of federated scheduling (FED-WBF) and partitioned scheduling
• Schedulability ratio over randomly generated DAG tasks (Melani et al., 2015)

• PAR-FEAS: schedulability limit

Experiments on parallel tasks
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• Comparison of federated scheduling (FED-WBF) and partitioned scheduling
• Schedulability ratio over randomly generated DAG tasks (Melani et al., 2015)

• PAR-FEAS: schedulability limit

Experiments on parallel tasks
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• Comparison of federated scheduling (FED-WBF) and partitioned scheduling
• Schedulability ratio over randomly generated DAG tasks (Melani et al., 2015)

• PAR-FEAS: schedulability limit

Experiments on parallel tasks
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16 processors, 20 tasks, 𝑇𝑖 ∈ 100,1000

Experiments on parallel tasks

• Similar results are observed for other system configurations, with 
even larger performance gaps
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Conclusions

• The EDD task model was proposed to explicitly deal with complex 
computing workloads that incur event-related delays

• Applications include:
• Analysis of asynchronous HW acceleration
• Analysis of partitioned parallel tasks on multicores
• Generalization of other task models

• Two response time analysis techniques were proposed
• The optimization approach was shown to generally improve upon the closed-

form approach, especially in the experiments on parallel tasks

• Partitioned scheduling of parallel tasks analyzed by means of EDD 
tasks was shown to significantly outperform federated scheduling, 
without the need for global scheduling
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Future work

• Evaluate the applicability of the EDD model to other kinds of 
workloads
• Inference of Deep Neural Networks (DNN) on GPU- and FPGA-based 

heterogeneous platforms

• Multiprocessor version of FRED with support for asynchronous HW 
acceleration

• Devise a suitable MILP analysis for EDF scheduling of EDD tasks

• Explore additional partitioning approaches for parallel tasks

• Investigate possible applications of semi-partitioning of nodes on 
multiprocessors

• Investigate the analysis of locking protocols in parallel task models
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Publication

• Publication describing the EDD modeling and analysis framework:
• F. Aromolo, A. Biondi, G. Nelissen, and G. Buttazzo, “Event-Driven Delay-

Induced Tasks: Model, Analysis, and Applications,” In Proceedings of the 
27th IEEE Real-Time and Embedded Technology and Applications Symposium 
(RTAS 2021)
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Related publications

• Publication proposing a response-time analysis for dynamic self-
suspending tasks under EDF based on a transformation to sporadic 
tasks with jitter, applicable to the analysis of EDD tasks under EDF:
• F. Aromolo, A. Biondi, and G. Nelissen, “Response-Time Analysis for Self-

Suspending Tasks Under EDF Scheduling,” in Proceedings of the 34th 
Euromicro Conference on Real-Time Systems (ECRTS 2022)
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Related publications

• Publication proposing the Replication-Based Scheduling paradigm 
for parallel tasks as a specialized alternative to partitioned, global, 
and federated scheduling
• F. Aromolo, G. Nelissen, and A. Biondi, “Replication-Based Scheduling of 

Parallel Real-Time Tasks,” in Proceedings of the 35th Euromicro Conference 
on Real-Time Systems (ECRTS 2023)
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