Numpex

Funded PhD position: Energy-aware job scheduling and feedback

Keywords High Performance Computing, energy-aware scheduling, CO2 impact, energy-efficiency Context High Performance Computing usage is growing from climate science studies to chemical research. The increased impact of these computation opens the field of research on how to manage and reduce their energy consumption. The PhD is in the context of the NumPEx project which aims at developing state-of-the-art skills and infrastructures in the field of exascale computing. One of the pillars of NumPEx focuses on making exascale computing sustainable.

Doctorat financé : Surveillance et modèles de l'énergie et des performances en vue d'un calcul durable à l'échelle Exascale

Contexte L’utilisation de l’informatique de haute performance se développe depuis les études de climatologie jusqu’à la recherche chimique. L’impact accru de ces calculs ouvre le champ de la recherche sur la manière de gérer et de réduire leur consommation d’énergie. Dans le cadre du projet NumPEx, nous visons à développer des compétences et des infrastructures de pointe dans le domaine du calcul exascale. L’un des piliers du projet NumPEx consiste à rendre le calcul exascale durable.

Funded PhD position: Energy and performance monitoring and models towards sustainable Exascale computing

Context High Performance Computing usage is growing from climate science studies to chemical research. The increased impact of these computation opens the field of research on how to manage and reduce their energy consumption. In the NumPEx project we aim at developing state-of-the-art skills and infrastructures in the field of exascale computing. One of the pillars of NumPEx focuses on making exascale computing sustainable. To make informed cluster-level scheduling decisions and to provide feedback to users, information on the whole infrastructure is needed.

Internship/project position: Real-time distributed system (hardware performance counters, RAPL, ...) monitoring for HPC

Context High Performance Computing usage is growing from climate science studies to chemical research. The increased impact of these computation opens the field of research on how to manage and reduce their energy consumption. In the NumPEx project we aim at developing state-of-the-art skills and infrastructures in the field of exascale computing. One of the pillars of NumPEx focuses on making exascale computing sustainable. To make informed cluster-level scheduling decisions and to provide feedback to users, information on the whole infrastructure is needed.

Internship/project position: Real-time phase detection for large-scale HPC applications

Context High Performance Computing usage is growing from climate science studies to chemical research. The increased impact of these computation opens the field of research on how to manage and reduce their energy consumption. In the NumPEx project we aim at developing state-of-the-art skills and infrastructures in the field of exascale computing. One of the pillars of NumPEx focuses on making exascale computing sustainable. To make informed cluster-level scheduling decisions and to provide feedback to users, information on the whole infrastructure is needed.

Internship/project position: Sustainable monitoring of large-scale HPC applications: Reducing data amount to save energy

Context High Performance Computing usage is growing from climate science studies to chemical research. The increased impact of these computation opens the field of research on how to manage and reduce their energy consumption. In the NumPEx project we aim at developing state-of-the-art skills and infrastructures in the field of exascale computing. One of the pillars of NumPEx focuses on making exascale computing sustainable. To make informed cluster-level scheduling decisions and to provide feedback to users, information on the whole infrastructure is needed.