Pulse-Coupled Synchronization for Cooperating Agents

towards Mobile Cyber-Physical Systems

Luis Almeida

www.fe.up.pt/~lda

U

Teams of cooperating agents

- What for? •
 - Robust & wider sensing _
 - Cooperative sensing & control _
 - Efficient actuation, ... _

(R1)

R3

TER - Research Centre in

Real-Time & Embedded Computing Systems

Requirements for effective collaboration

- Synchronization
 - Coordination in time
- Information dissemination
 - Sharing state, events...
- Dynamic membership
 - Who is in the team
- Location-awareness
 - Where are the team-mates
- Combination of behaviors
 - Collaborative versus autonomous

PORTO FACULDADE DE ENGENHARIA UNIVERSIDADE DO PORTO

Communication requirements

3 May, 2021

A few observations on wireless communication

- . Common CSMA MACs are similar to "talking in a meeting"
- Abuse leads to global communication degradation
 - Saturation, starvation, thrashing...
- Under high traffic, access rules improve <u>effectiveness</u> of channel use
 - Example: **TDMA** Time Division Multiple Access
- Periodic interference can generate degradation
 even with light load
 - Critical periods

CISTER - Research Centre in Real-Time & Embedded Computing Systems

FACULDADE DE ENGENHARIA UNIVERSIDADE DO PORTO

FEUP

Pulse-coupled synchronization, an inspiration

- Synchronization is important for effective and efficient communications
- Pulse-coupled synchronization is a natural mechanism that is
 - Infrastructure-free, distributed, scalable and robust

(videos from youtube)

CISTER - Research Centre in Real-Time & Embedded Computing Systems

Initial case study – RoboCup MSL (Middle Size League)

Requirements

- WiFi communication
- Need to **share state** and events within the team
- Need to cope with external (alien) traffic
- Coordination of transmissions
 - State sharing \rightarrow *periodic pulses*
 - broadcast medium → coupling mechanism
- Reconfigurable and Adaptive <u>TDMA</u> protocol (RA-TDMA)
 - Coordinates transmissions within the team
 - Internal synchronization, broadcast dissemination
 - Escapes from critical periods and copes with external traffic

R0

ORTO

FEUP FACULDADE DE ENGENHARIA

Infrastructured

Adaptive TDMA

Time Division Multiple Access

R2

- One slot per node reservation
- Dynamic reference election (lowest ID)

М_{о.і}

M_{0,i}

T_{0,i}

Distributed

bedded Systems Lab

T_{xwin}

T_{xwin}

Maximizes separation between team transmissions T_{tup} М_{0,і+1} M_{1.i} M_{2.i} M_{3.i} round phase shift T_{tup} δ_4 ► M_{0,i} δ_4 **M**_{1,i} **M**_{0,i} $\dot{T}_{0,i+1}$ $t_{0,k+1} = t_{0,k} + T_{tup} + \min\left(\max_{i=1..N-1} \delta_i, \Delta\right)$ Reference round k **Other nodes** $t_{i,k} = \hat{t}_{0,k} + i * T_{xwin}, \quad i = 1..N - 1$ agent i rch Centre in <u>ر</u>ے

Real-Time & Embedded Computing Systems

FEUP

Reconfigurable & Adaptive TDMA

Robots join and leave dynamically

- crash, maintenance, moving in and out of range...
- Slots are created / destroyed dynamically

Round is kept

- 9 -

Membership and round structure

- 10 -

On the use of the protocol

Adequate to disseminate state information

- On the contrary, implies extra delays on event transmission
- Events should be sent as external traffic, outside the protocol control
- . Typical behaviors
 - Collaborative ball tracking
 - Formation control
 - Team entrance in and departure from field
 - Set-plays (tactics) enforcement
 - Collaborative **sensing** for strategic reasoning
 - . At the coach level

Source code available at: www.bitbucket.org/fredericosantos/rtdb/

RA-TDMA at work

BOMBEIROS

Search and Rescue scenarios

- <u>Multi-hop mesh topology</u> is more favorable
 - Higher flexibility in area coverage and formation control
- but
 - New agents can join in a "corner" of the network
 - There can be localized noise affecting a few agents, only

Ad-hoc Reconfigurable and Adaptive TDMA protocol (RA-TDMA+)

(WiFi and IEEE 802.15.4)

CISTER - Research Centre in Real-Time & Embedded Computing Systems

Membership? Topology tracking?

• Build and maintain an adjacency matrix

- Sense neighborhood and disseminate in a periodic message
- Merge matrices with neighbors (flooding)
- Enables on the fly (proactive) routing

Converging to a global adjacency matrix

Detecting <u>omissions</u>

- The corresponding bit in the local vision (its line) in the receiver matrix is reset

2

3

5

- A column with all 0s means that **node is disconnected** from the team
- Uses <u>sequence numbers</u> per line
 - Update the lines with higher sequence number (seq. number included)
 - Increment just before transmission and send together
 - Erase lines that have not been updated for some time

Slot allocation

- Based on the order of the physical IDs

٠

٠

Ad-hoc synchronization

Slot synchronization is localized

Agents synchronize directly with their neighbours using their periodic messages

Synchronization is propagated through the network

- Even if agents do **not communicate directly** they eventually synchronize
- Time necessary to reach synchronization depends on link density •

round k

agent

FACULDADE DE ENGENHARIA INIVERSIDADE DO PORTO

- 16 -

Real-Time & Embedded Computing Systems

Expressing delays as angles \rightarrow phases

•

•

Anomalies when $A_{\phi} \geq \pi$

Unclear reference

Different agents see different maximum phase ! ٠

- 18 -

Real-Time & Embedded Computing Systems

Impact of Δ in the convergence time

FEUP

Impact of Δ in the convergence time

Synchronization in phase and time

Random topologies Random initial phases No external delays

https://cutt.ly/sbcZZKS

Physical topology with moving agents

Forced spanning-tree topology

CISTER - Research Centre in Real-Time & Embedded Computing Systems

Impact of mobility and network delays

Impact of membership

Rare cases (> π) due to membership changes Tup=200ms Δ=8ms (ε=40%) Max level interference (0..10ms) 0.8 Impact of **network delays** E D D 0.6 plus dynamic topology 99 percentile plus dynamic membership: 0.4 $(<<\pi)$ 0.2 Agents in the team: $3 \rightarrow 10 \rightarrow 3 \rightarrow 10...$ 1 added /removed every 50s for 10000s 0 20 40 60 80 100 120 0 Largest diference of phases (ms) Δt_{ϕ} Synchronization kept \rightarrow Arc << π (100ms diff) Except when adding/removing agents

Synchronization in phase and time

External delays + losses Dynamic topologies Dynamic membership

https://cutt.ly/CbcXAq6

Physical topology with moving agents

Forced spanning-tree topology

CISTER - Research Centre in Real-Time & Embedded Computing Systems

Vehicular networks - platooning

Line topology to connect the platoon

- Vehicles broadcast periodic beacons (CAM Cooperative Awareness Messages)
- Potentially multi-hop
- Must be highly scalable
 - Potentially many vehicles within reach
 - How to reduce collisions and improve channel use

Reconfigurable and Adaptive TDMA for platooning protocol (RA-TDMAp)

RA-TDMAp for platooning

- Synchronization
 - CAMs in a platoon with offsets (slots) with respect to leader
- Adaptivity
 - Leader, only, adjusts tx time to bring its platoon out of phase wrt other platoons or single cars (unaware synchronization)

• Reconfigurability

- Admission control, offsets adjustment simultaneously with platoon control

- 26 -

Tx power in RA-TDMAp

Transmission power control

- Leader \rightarrow Higher power to synchronize the whole platoon
- Follower → Lower power to interact with car ahead
 - Reduces interference caused to other vehicles
 - Improves spatial reusability of the channel
 - Requires multi-hop communication to propagate delays to the leader

Propagating delays in RA-TDMAp

Following car observes delay when receiving message, writes it to a Delay Vector and piggybacks this vector to its next transmission

•

Simulation framework

PLEXE → Platooning Extension for Veins

- platooning simulator
- Highway scenario
- Autonomous vehicles

• Veins \rightarrow Open source vehicular network simulation

- Real environment scenario, considering high mobility
- Full stack of IEEE802.11p / IEEE 1609.4 standards
- SUMO → Road traffic simulation
- OMNET++ → Event-based simulator
 - Runs Veins and PLEXE, plus the RA-TDMAp logic
 - . Allows collecting operational data

- 29 -

Simulation experiments

- . Scenario
 - 4 lanes, 16 platoons with 10 vehicles each
 - 5m vehicles gap, CACC controller
- Comparison with related protocols
 - Plexe_Slotted (fixed offsets inside the platoon) and CSMA/CA (random offsets and drift)
 - Three different followers' transmission power levels
- Network metrics
 - Collisions rate and Channel busy ratio
- Application layer metric
 - Safe-time ratio

Collisions rate

- 31 -

Channel busy ratio

Safe-time ratio

Online monitoring with aerial networks

Line topology needed to extend reach

- Intermediate agents **relay** to a ground station
- High bandwidth requirements (e.g., live video streaming)
- Compromise between **bandwidth**, **delay** and **distance**
- Uses confirmed <u>unicast</u> transmissions
 - More **robust** to losses but more **variable** delays

Reconfigurable and Adaptive TDMA streaming protocol (RA-TDMAs)

(WiFi)

Synchronizing from many packets

- Many packets, different delays
 - Each packet carries its **packet offset** \rightarrow enables use for synchronization
- Estimation of network delay needed
 - Packets transmitted if there is reasonable confidence, they are received in that slot

- 35 -

Using RA-TDMAs

• Estimating the round offset

- How to **combine** the delays of all packets in each slot ?
- How do simple aggregation functions (MIN, MAX, MED) perform ?

. Experiments

- Platform: AR Drone 2.0
 - ARM 700MHz
 - 802.11g@24Mb/s, MAC retries = 2
- Topology
 - Physically fully connected network
 - Logical line enforced with static routing

- RA-TDMAs

- T = 96ms, slot = 32ms, Δ = 8ms (25% of slot)
- Slot IDs ascending from source to BS
- Data Flow
 - Sensor tx 1 frame every ~130ms = 7.5FPS
 - 1 frame = 11KB in 73 UDP (154B) packets

Results

Conclusion

Collaboration among autonomous agents requires

- wireless communication (interference, errors, multi-path fading, attenuation...)
- Synchronization (TDMA) improves the channel
 - Particularly, for **periodic (interfering) traffic** and **high load**
 - Leads to reducing network delays & packet losses
- RA-TDMA approaches provide robust sync in a multitude of scenarios
 - Follow **pulse-coupled synchronization** principle
 - Tolerate interferences and adapt to delays of any source
 - Tolerate **loss** of packets
 - Improve channel usage by multiple teams unaware of each other

A few open issues

Manage nodes positions

- (infrastructure) Continuously relocate the AP to maximize team coverage
- (line of relays) Manage relays positions to equalize link parameters
- (ad-hoc) Ensure multiple links, e.g. bi-connectivity
- . Improve online estimation of link parameters and delay pattern
 - Throughput, PDR, delay
- Optimize the global use of the team resources
 - Bandwidth, energy, computing, specific subsystems, ...

Acknowledgments

- . This is essentially the work of four concluded PhD thesis
 - Frederico Santos
 - . Infra-structured version: RA-TDMA (plus RTDB, used in RoboCup-MSL)
 - Luis Oliveira
 - . Ad-hoc version: RA-TDMA+ / consensus in a mesh (plus RT routing and localization)
 - Luis Pinto
 - . Line relaying version: RA-TDMAs (plus online streaming, slots adaptation, relay positioning)
 - <u>Aqsa Aslam</u>
 - Platoon version: RA-TDMAp (scalability and admission control)

3 May, 2021

Some pointers to our work in this line

- A. Aslam, P.M. Santos, F. Santos, L. Almeida. Empirical Performance Models of MAC Protocols for Cooperative Platooning Applications. Electronics, 8(11):1334. MDPI. Nov 2019. DOI: 10.3390/electronics8111334
- Luis Pinto, Luis Almeida. A Robust Approach to TDMA Synchronization in Aerial Networks. Sensors 2018, 18(12), 4497:1-18;. December 2018. (DOI: 10.3390/s18124497)
- Aqsa Aslam, Luis Almeida, Frederico Santos. A Flexible TDMA Overlay Protocol for Vehicles Platooning. 13th International Workshop On Communication Technologies For Vehicles, Net4Cars 2018, Madrid, Spain, 17-18 May, 2018.
- Luis Oliveira, Luis Almeida, Daniel Mosse. A Clockless Synchronisation Framework for Cooperating Mobile Robots. 24th IEEE Real-Time and Embedded Applications Symposium, RTAS 2018. Porto, Portugal. 11-13 April 2018.
- Luis Ramos Pinto, Luis Almeida, Hassan Alizadeh, Anthony Rowe. Aerial Video Stream over Multi-hop using Adaptive TDMA Slots. RTSS 2017 38th IEEE Real-Time Systems Symposium. Paris, France. 5-8 December 2017.
- Luis Ramos Pinto, Luis Almeida, and Anthony Rowe. Balancing Packet Delivery to Improve End-to-end Multi-hop Aerial Video Streaming.
 ROBOT'2017 3rd Iberian Robotics Conference. Sevilla, Spain. 22-24 November 2017
- Aqsa Aslam, Luis Almeida, Frederico Santos. Using RA-TDMA to Support Concurrent Collaborative Applications in VANETs. IEEE EUROCON 2017, Ohrid, R. Macedonia. 6-8 July 2017
- Sidney Carvalho, Luis Pinto, Luis Almeida, Ubirajara Moreno. Improving Robustness of Robotic Networks using Consensus and Wireless
 Signal Strength. TA 2016 4th IFAC Symposium on Telematics Applications. Porto Alegre, Brazil. 6-9 November 2016.
- L. Almeida, F. Santos, L. Oliveira. Structuring Communications for Mobile Cyber-Physical Systems. In Management of Cyber Physical Objects in the Future Internet of Things: Methods, Architectures and Applications. A. Guerrieri, V. Loscri, A. Rovella, G. Fortino (Eds), Springer, Series on Internet of Things, Vol. 1: ISBN 978-3-319-26867-5, 2016. (DOI: 10.1007/978-3-319-26869-9)
- Luis Oliveira, Luis Almeida, Pedro Lima. Multi-hop routing within TDMA slots for teams of cooperating robots. WFCS 2015 11th IEEE World Conference on Factory Communication Systems. Palma de Mallorca, Spain. 27-29 May 2015.
- P. Lima, A. Ahmad, A. Dias, A. G. S. Conceição, A.P. Moreira, E. Silva, L. Almeida, L. Oliveira, T. P. Nascimento. Formation Control Driven by Cooperative Object Tracking. Robotics and Autonomous Systems (ISSN: 0921-8890), 63(P1):68-79. Elsevier, Jan 2015.
- L. Oliveira, H. Li, L. Almeida, T. E. Abrudan. **RSSI-based Relative Localisation for Mobile Robots**. Ad Hoc Networks (ISSN 1570-8705), 13-B:321-335. DOI:10.1016/ j.adhoc.2013.07.007. Elsevier. February 2014.
- A.J.R. Neves, J.L.Azevedo, B.Cunha, N.Lau, J.Silva, F.Santos, G.Corrente, D.A. Martins, N.Figueiredo, A.Pereira, L.Almeida, L.S. Lopes, A.J.
 Pinho, J.Rodrigues, P. Pedreiras. CAMBADA soccer team: from robot architecture to multiagent coordination. in Robot Soccer, Vladan Papić (ed), INTECH, pp:19-46. ISBN 978-953-307-036-0, January 2010. (DOI: 10.5772/7353)
- F. Santos, L. Almeida, L.S. Lopes, J.L. Azevedo, M.B. Cunha. **Communicating among robots in the RoboCup Middle-Size League**. RoboCup Symposium 2009, Graz, Austria. June 29-July 5, 2009 (LNCS 5949, Springer 2010).
- F. Santos, L. Almeida, L.S. Lopes. Self-configuration of an Adaptive TDMA wireless communication protocol for teams of mobile robots.
 ETFA 2008, 13th IEEE Conference on Emerging Technologies and Factory Automation. Hamburg, Germany, 15-18 September 2008.
- F. Santos, L. Almeida, P. Pedreiras, L. S. Lopes, T. Facchinetti. An Adaptive TDMA protocol for Soft Real-Time Wireless Communication among Mobile Autonomous Agents. WACERTS 2004, Int. Workshop on Architectures for Cooperative Embedded Real-Time Systems (satellite of RTSS'04). Lisboa, Portugal . Dec 2004

ntre in d Computing Systems

