
From type theory to setoids and back:
a setoid model of

extensional Martin-Löf type theory 1

Erik Palmgren
Stockholm University

PCC 2019
Institute Mittag-Leffler, July 15-19, 2019

1Extended version of talks given at HMI, Bonn University, Göteborg
University and Leeds University in 2018.



1.1/ Modelling Type Theory

The term model (P. Martin-Löf).

Intensional and extensional TT: Realizability models (P. Aczel, M.
Beeson and J. Smith (1978)) – use type-free structures

Intensional and extensional TT: Category-theoretic models (J. Cartmell,
P. Dybjer, M. Hofmann, T. Streicher and others)

Partial type theory: Domain models (P. Martin-Löf, E.P)

Set-theoretic models of type theory: A. Salvesen 1986 in ZF, B. Werner
model of Coq in ZF, B. Barras model of Coq in IZF — both formalized in
Coq.

HoTT : Simplicial models (V. Voedovsky), Cubical models (M. Bezem,
T. Coquand, S. Huber, and others)



1.2/ Type Theory in Type Theory

The problem of modelling intensional Martin-Löf type theory within
itself is a long standing issue and whether the proposed solutions
are "natural" is debated. There are various proof-theoretic
interpretations via CZF by Aczel, Rathjen and others, designed for
determination of proof strength

MLÐ→∗ CZFÐ→∗ ML+

M. Hofmann (1994): conservativity of extensional ML over
intensional ML for ML w/o universes.

The pioneering work of Dybjer Internal Type Theory 1995
attempted a direct interpretation, and revealed that there were
many equational problems to solve, that in category theory are
known as coherence problems. It also made clear that families of
setoids must be defined in a careful way to solve these problems.



1.2/ Categorical models in Type Theory
A very general form of models of type theory is given by Categories
with Attributes, CwA, (equivalently categories with families), which
consists of a category C intended to give the semantics of contexts
and substitutions. The types in contexts and the action of
substitutions is given by a contravariant functor

Ty ∶ Cop Ð→ Set

All type-theoretic notions may then axiomatized in defined in terms
of contexts, their extensions and projections

↓A∶ Γ�AÐ→ Γ.

These categorical model live in set theory (which may be
constructive). A challenge is to construct them directly in type
theory, using setoids instead of sets. (E.P. ECwA, BCwA, Coq
formalizations by E.P, Peter LeFanu Lumsdaine, Chaitanya L.
Subramanian.)



2.1/ Setoids ∼ Errett Bishop’s notion of set 2

The most common notion of general set in proof-assistants based
on Martin-Löf type theory (Coq, Agda) is the setoid.

▸ A setoid A = (∣A∣,=A) is a type ∣A∣ together with an
equivalence relation =A.

▸ An (extensional) function f ∶ A→ B between setoids is a
function (operation) ∣A∣→ ∣B ∣ together with a proof that the
operation respects the equalities =A and =B .

When based on Martin-Löf type theory this forms a good category
of sets for constructive mathematics, supporting several choice
principles: Axiom of Unique Choice, Dependent Choice and Aczel’s
Presentation Axiom.
And moreover allowing many set-theoretic construction, and the
crucial quotient construction that is missing from MLTT.

2P. : Bishop-style constructive mathematics in type theory — a tutorial.
Constructive Mathematics: Foundations and Practice held in Nis, Serbia, June
24-28, 2013. See: http://staff.math.su.se/palmgren



2.2/ Quotient construction
Let X = (∣X ∣,=X ) be a setoid and let ∼ be a reflexive relation on
this setoid. Then by the extensionality of the relation

x =X y Ô⇒ x ∼ y . (1)

Thus if ∼ is an equivalence relation on X

X /∼ = (∣X ∣,∼)
is a setoid, and q ∶ X → X /∼ defined by q(x) = x is surjective.
Extension property: If f ∶ X → Y is a function with

x ∼ y Ô⇒ f (x) =Y f (y), (2)

then there is a unique function f ∶ X /∼→ Y with

f (i(x)) =Y f (x) (x ∈ X ).
We have constructed the quotient of X with respect to ∼:
q ∶ X → X /∼
Remark. Every set is a quotient of a choice set (Presentation Ax.)



3.1/ Stratified setoids

Martin-Löf type theory (and derivative proof assistants, Agda, Coq)
features an infinite hierarchy of type universes

U0 ⊆ U1 ⊆ U2 ⊆ ⋯
each closed under the standard constructions Σ, Π and certain
inductive types. This gives a natural stratification of setoids. A

setoid A is an (m,n)-setoid if

∣A∣ ∶ Um =A∶ ∣A∣→ ∣A∣→ Un.

▸ m-setoid =def (m,m)-setoid
▸ m-classoid =def (m + 1,m)-setoid
▸ (“Replacement”) f ∶ A→ B , A m-setoid, B m-classoid Ô⇒

Im(f ) m-setoid. — justification for the name classoid.



3.2/ Examples of stratified setoids

▸ N = (N, Id(N, ⋅, ⋅)) is a 0-setoid.
▸ Aczel’s model of CZF: V = (V ,=V ) forms a 0-classoid in ML
type theory (if built from the universe U0).

▸ Sub(A) the n-subsetoids of a n-classoid A forms a n-classoid.
▸ Ωn = (Un,↔) propositions of level n with logical equivalence
constitute an n-classoid.

▸ For an n-setoid A, the setoid of extensional propositional
functions of level n

Pn(A) = [A→ Ωn]

is an n-classoid.



3.3/ Families of setoids

Let A and X be setoids. Let F ∶ A→ Sub(X ) be an extensional
function.

Then F (x) = (δ(F (x)), ιF(x)) with ιF(x) ∶ δF (x)→ X injective,
and for p ∶ x =A y , there is a unique isomorphism
φp ∶ δ(F (x))→ δ(F (y)) such that

ιF(x) = ιF(y)φp. (3)

Thus we obtain family F ∗ of setoids over A with proof-irrelevant
transport functions F ∗(p) by letting:

F ∗(x) ∶= δ(F (x)) F ∗(p) ∶= φp.



3.4/ Families of setoids (cont.)

Abstracting on the properties of F ∗ one can arrive at the definition:

Definition
Let A be a setoid. A (proof-irrelevant) setoid-family consists of a
family F (a) of setoids indexed by a ∈ A, with extensional transport
functions F (p) ∶ F (a)→ F (b) for each proof p ∶ a =A b, satisfying

▸ F (p) =ext F (q) for each pair of proofs p,q ∶ a =A b
(proof-irrelevance)

▸ F (ra) = idF(a) where ra ∶ a =A a is the standard proof of
reflexivity.

▸ F (p ⊙ q) = F (p) ○ F (q) if q ∶ a =A b and p ∶ b =A c , and where
p ⊙ q ∶ a =A c , using the standard proof ⊙ of transitivity.

Alternatively F ∶ A# → Setoids is an E-functor (where A# is the
discrete category of A).



3.5/ Dependent Setoid Constructions
With this notion of family, we can start making type-theoretic
constructions towards the setoid model.

For a F a family on A, we can form the dependent sum Σ(A,F )
and the dependent product setoid Π(A,F ) as follows
Σ(A,F ) = ((Σx ∶ ∣A∣)∣F (x)∣,∼) where

(x , y) ∼ (u, v) ∶= (∃p ∶ x =A u)[F (p)(y) =B(u) v]
Π(A,F ) = (P,∼) where

P ∶=(Σf ∶ (Πx ∶ ∣A∣)∣F (x)∣)
(∀x , y ∶ A)(∀p ∶ x =A y)[F (p)(f (x)) =B(y) f (y)]

and the equality is extensional:

(f , e) ∼ (g , e′) ∶= (∀x ∶ A)[f (x) =B(x) g(y)].
The operations Π,Σ,Ex act on families of setoids to produce new
families of setoids.



4.1/ Judgement Forms of ML Type Theory

The basic judgement forms of Martin-Löf Type Theory (1984) are
displayed to the left

ΓÔ⇒ A type A ∈ Fam(Γ)
ΓÔ⇒ A = B ?
ΓÔ⇒ a ∶ A a ∈ Π(Γ,A)
ΓÔ⇒ a = b ∶ A a = b ∈ Π(Γ,A)

We may now try to interpret the forms as the statements about
setoids to the right above. But we do not yet have any obvious
interpretation of the type equality.

We may e.g. need to compare e.g. Π(A,B) and Π(A′,B ′) as setoid
families over Γ. A solution is to embed all dependent families of
setoids in to a big universal setoid (classoid).



4.2/ Type-free interpretations of type theory

To obtain a setoid model without coherence problems we may seek
inspiration from type-free interpretations of (extensional) type
theory, e.g.

Jan Smith, An Interpretation of Martin-Löf’s Type Theory in a
Type-Free Theory of Propositions, Journal of Symbolic Logic 1984

But instead of using a combinators or recursive realizers, use
constructive sets.



4.3/ Aczel’s iterative sets model

Aczel’s type of iterative sets V (Aczel 1978) is a type of
well-founded trees where the branching f can be indexed by any
type A in a universe U of small types. The introduction rule tells
how to build a set α = sup(A, f ) from a family f (x) (x ∶ A) of
previously constructed sets

A ∶ U f ∶ A→ V
sup(A, f ) ∶ V (V intro)

Equality =V is defined by bisimulation, and then membership is
given by

x ∈̇ sup(A, f ) ∶= (∃a ∶ A)(x =V f (a)).
(V ,=V , ∈̇) is a model of CZF + DC (and possibly more, depending
on the type theory).



4.4/ Aczel’s iterative sets and setoids

Observations:

1. If U = U0, then V = (V ,=V ) is a classoid. Every set
α = sup(A, f ) ∶ V gives rise to a canonical setoid

κ(α) = (A,=f ) where a =f b := f (a) =V f (b)

κ extends to a full and faithful E-functor into Setoids.

2. Moreover, if B is a subsetoid of V , then, for some β ∶ V , there is
a bijection

B ≅ κ(β).

Indeed, if ι ∶ (∣B ∣,=B)→ (V ,=V ) is an injection, and we may let
β = sup(∣B ∣, ι).



4.5/ Aczel’s iterative sets and setoids (cont.)

V

,

●α = sup(A, f )

●β = sup(∣B ∣, ι)

⌣-

κ(α) = (∣A∣,=f )

B = (∣B ∣,=B)ι inj.

κ(β) ≅ B

E(B, ι) = sup(∣B ∣, ι) = β

Notation: if α = sup(A, f ), write #α = A and α ▸ x = f (x).
In fact as classoids, we have a bijection:

V ≅ Sub(V).



4.6/ Aczel’s iterative sets and setoids (cont.)

Furthermore CZF (and V) admits constructions of dependent sums
and products of sets (Aczel 1982). These relate well to the
corresponding setoid constructions.

For α ∶ V and g ∶ κ(α)→ V we have sets σ(α,g), π(α,g) ∶ V with

κ(σ(α,g)) ≅ Σ(κ(α), κ ○ g) κ(π(α,g)) ≅ Π(κ(α), κ ○ g)
The set-theoretic version of the Σ-construction is, for a ∶ V ,
g ∶ [κ(a)→ V],
σ(α,g) = sup((Σy ∶ #(a))#(f (y)), λu. < a▸(π1(u)), (g(π1(u)))▸(π2(u)) >)



The set-theoretic Π-construction is more involved. For a ∶ V and
g ∶ [κ(a)→ V] define

piV-iV(a,g) = (Σf ∶ (Πx ∶ #(a))#(g(a)))
(∀x , y ∶ #(a))(∀p ∶ x =κ(a) y)

(κ ○ g)(p)(f (x)) =(κ○g)(y) f (y)
piV-bV(a,g) = λh.sup(#(a), (λx . < a ▸ x ,g(x) ▸ (π1(h)(x)) >))

π(a,g) = sup(piV-iV,piV-bV(a,g))

The first type piV-iV(a,g) singles out the extensional functions
with a Σ-type. The branching function piV-bV then transforms such
an extensional function to its graph in terms of set-theoretic pairs.



4.8/ The setoid model – interpretation in V

Contexts : elements Γ,∆,Θ, . . . in classoid V = (V ,=V ).
Context morphisms : setoid maps κ(∆)⇒ κ(Γ)
Types : setoid maps κ(Γ)Ô⇒ V.

Raw terms : setoid maps κ(Γ)Ô⇒ V.



4.9/ The setoid model – interpretation in V (cont.)

The basic judgement forms of Martin-Löf Type Theory (1984) are
displayed to the left. The setoid interpretation is on the right.

ΓÔ⇒ A type A ∶ κ(Γ)Ô⇒ V
ΓÔ⇒ A = B A =ext B ∶ κ(Γ)Ô⇒ V
ΓÔ⇒ a ∶ A ∀x ∶ κ(Γ), a(x) ∈V A(x)
ΓÔ⇒ a = b ∶ A ∀x ∶ κ(Γ), a(x) =V b(x) ∈V A(x)

On the right, a,b ∶ κ(Γ)Ô⇒ V are raw terms.



4.10/ Interpreted rules : Substitutions
Γ context

Γ == Γ

Γ == ∆

∆ == Γ

Γ == ∆ ∆ == Φ

Γ == Φ

f ∶ ΓÐ→ ∆

f == f ∶ ΓÐ→ ∆

f == g ∶ ΓÐ→ ∆

g == f ∶ ΓÐ→ ∆

f == g ∶ ΓÐ→ ∆ g == h ∶ ΓÐ→ ∆

f == h ∶ ΓÐ→ ∆

Γ context
idΓ ∶ ΓÐ→ Γ

g ∶ ΓÐ→ ∆ f ∶ ∆Ð→ Φ

f ⌢ g ∶ ΓÐ→ Φ

g ∶ ΓÐ→ ∆

g ⌢ idΓ == g ∶ ΓÐ→ ∆

g ∶ ΓÐ→ ∆

id∆ ⌢ g == g ∶ ΓÐ→ Φ

h ∶ ΓÐ→ ∆ g ∶ ∆Ð→ Φ f ∶ ΦÐ→ Ξ

(f ⌢ g) ⌢ h == f ⌢ (g ⌢ h) ∶ ΓÐ→ Ξ

g == g ′ ∶ ΓÐ→ ∆ f == f ′ ∶ ∆Ð→ Φ

f ⌢ g == f ′ ⌢ g ′ ∶ ΓÐ→ Φ

p ∶ Γ == ∆

φp ∶ ΓÐ→ ∆
(subst-trp) p ∶ Γ == ∆ q ∶ Γ == ∆

φp == φq ∶ ΓÐ→ ∆
(subst-trp-irr)

p ∶ Γ == Γ

φp = idΓ ∶ ΓÐ→ Γ
(subst-trp-id) p ∶ Γ == ∆ q ∶ ∆ == Φ r ∶ Γ == Φ

φq ⌢ φp == φr ∶ ΓÐ→ Φ
(subst-trp-fun)



4.11/ Interpreted rules: Context extension etc
context

ΓÔ⇒ A type

Γ � A context

ΓÔ⇒ A type ∆Ô⇒ B type p ∶ (Γ == ∆) ΓÔ⇒ A == B[[φp]]
Γ � A == ∆ � B

ΓÔ⇒ A type

↓ A ∶ Γ � AÐ→ Γ
(↓)

ΓÔ⇒ A type

Γ � AÔ⇒ vA ∶∶ A[[↓ A]]
(asm)

f ∶ ∆Ð→ Γ ΓÔ⇒ A type p ∶ (∆Ô⇒ a ∶∶ A[[f ]])
⟨f , a⟩p ∶ ∆Ð→ Γ � A

(ext)

f ∶ ∆Ð→ Γ ΓÔ⇒ A type p ∶ (∆Ô⇒ a ∶∶ A[[f ]]) q ∶ (∆Ô⇒ a ∶∶ A[[f ]])
⟨f , a⟩p == ⟨f , a⟩q ∶ ∆Ð→ Γ � A

(ext-irr)

f ∶ ∆Ð→ Γ ΓÔ⇒ A type p ∶ (∆Ô⇒ a ∶∶ A[[f ]])
(↓ A) ⌢ ⟨f , a⟩p == f ∶ ∆Ð→ Γ

(ext-prop1)

f ∶ ∆Ð→ Γ ΓÔ⇒ A type p ∶ (∆Ô⇒ a ∶∶ A[[f ]])
∆Ô⇒ vA[⟨f , a⟩p] == a ∶∶ A[[f ]] (ext-prop2)

ΓÔ⇒ A type p ∶ (ΓÔ⇒ vA ∶∶ A[[↓ A]])
⟨↓ A,vA⟩p == idΓ�A ∶ Γ � AÐ→ Γ � A

h ∶ ΘÐ→ ∆ f ∶ ∆Ð→ Γ ΓÔ⇒ A type p ∶ (∆Ô⇒ a ∶∶ A[[f ]]) q ∶ (∆Ô⇒ a[h] ∶∶ A[[f ⌢ h]])
⟨f , a⟩p ⌢ h = ⟨f ⌢ h, a[h]⟩q ∶ ∆Ð→ Γ � A



4.12/ Interpreted rules: Dependent function space
ΓÔ⇒ A type Γ � AÔ⇒ B type

ΓÔ⇒ Πf (A,B) type
(Π-f)

ΓÔ⇒ A type Γ � AÔ⇒ B type Γ � AÔ⇒ b ∶∶ B
ΓÔ⇒ λ(A,B, b) ∶∶ Πf (A,B) (Π-i)

ΓÔ⇒ A type Γ � AÔ⇒ B type Γ � AÔ⇒ b == b′ ∶∶ B
ΓÔ⇒ λ(A,B, b) == λ(A,B, b′) ∶∶ Πf (A,B)

(Π-xi)

ΓÔ⇒ A type Γ � AÔ⇒ B type p ∶ (ΓÔ⇒ c ∶∶ Πf (A,B)) q ∶ (ΓÔ⇒ a ∶∶ A)
ΓÔ⇒ app(A,B, c, p, a, q) ∶∶ B[[els(q)]] (Π-e)

ΓÔ⇒ A type Γ � AÔ⇒ B type r ∶ (ΓÔ⇒ λ(A,B, b) ∶∶ Πf (A,B)) q ∶ (ΓÔ⇒ a ∶∶ A)
ΓÔ⇒ app(A,B, λ(A,B, b), r, a, q) == b[els(q)] ∶∶ B[[els(q)] (Π-beta-gen)

p ∶ (ΓÔ⇒ c ∶∶ Πf (A,B))
q1 ∶ (Γ � AÔ⇒ vA ∶∶ A[[↓ (A)]])
q2 ∶ (Γ � AÔ⇒ c[↓ (A)] ∶∶ Πf (A[[↓ (A)]],B[[↑ (A, ↓ (A))]]))

λ(A,B,app(A[[↓ (A)]],B[[↑ (A, ↓ (A))]], c[↓ (A)], q2,vA, q1)) == c ∶∶ Πf (A,B) (Π-eta-eq-gen)

ΓÔ⇒ A type Γ � AÔ⇒ B type h ∶ ∆Ð→ Γ

∆Ô⇒ Πf (A,B)[[h]] == Πf (A[[h]],B[[↑ (A, h)]]) (Π-f-sub)

...



4.13/ Interpreted rules: the identity type

ΓÔ⇒ A type p ∶ (ΓÔ⇒ a ∶∶ A) q ∶ (ΓÔ⇒ a ∶∶ A)
ΓÔ⇒ ID(A, a, p, b, q) type

(ID)

ΓÔ⇒ A type p ∶ (ΓÔ⇒ a ∶∶ A)
ΓÔ⇒ rr(a) ∶∶ ID(A, a, p, a, p) (ID-i)

p ∶ (ΓÔ⇒ a ∶∶ A) q ∶ (ΓÔ⇒ a ∶∶ A) ΓÔ⇒ t ∶∶ ID(A, a, p, b, q)
ΓÔ⇒ a == b ∶∶ A (ID-e)

p ∶ (ΓÔ⇒ a ∶∶ A) q ∶ (ΓÔ⇒ a ∶∶ A) ΓÔ⇒ t ∶∶ ID(A, a, p, a, q)
ΓÔ⇒ t == rr(a) ∶∶ ID(A, a, p, a, q) (ID-uip)



4.14/ Interpreted rules: universes

For each k ∈ N

Γ context
ΓÔ⇒ Uk type

ΓÔ⇒ A ∶∶ Uk

ΓÔ⇒ A type

Γ context
ΓÔ⇒ Nat ∶∶ Uk

Γ context
ΓÔ⇒ N0 ∶∶ Uk

ΓÔ⇒ A ∶∶ Uk Γ � AÔ⇒ B ∶∶ Uk

ΓÔ⇒ Πf (A,B) ∶∶ Uk

ΓÔ⇒ A ∶∶ Uk Γ � AÔ⇒ B ∶∶ Uk

ΓÔ⇒ Σf (A,B) ∶∶ Uk

ΓÔ⇒ A ∶∶ Uk ΓÔ⇒ B ∶∶ Uk

ΓÔ⇒ Sum(A,B) ∶∶ Uk

ΓÔ⇒ A ∶∶ Uk p ∶ (ΓÔ⇒ a ∶∶ A) q ∶ (ΓÔ⇒ b ∶∶ A)
ΓÔ⇒ ID(A, a, p, b, q) ∶∶ Uk

Γ context
ΓÔ⇒ Uk ∶∶ Us(k)

ΓÔ⇒ A ∶∶ Uk

ΓÔ⇒ A ∶∶ Us(k)



5.1/ Interpretation of the universes

Use the type universe Set of Agda as a superuniverse. Agda’s data
construct allows building universes inside it via a so-called simultaneous
inductive recursive definition.

mutual
data Uo (A : Set) (B : A -> Set) : Set where

n0 : Uo A B
n1 : Uo A B
n : Uo A B
ix : Uo A B
lft : A -> Uo A B
σ : (a : Uo A B) -> (To a -> Uo A B) -> Uo A B
π : (a : Uo A B) -> (To a -> Uo A B) -> Uo A B
w : (a : Uo A B) -> (To a -> Uo A B) -> Uo A B

To : {A : Set} {B : A -> Set} -> Uo A B -> Set
To n0 = N0
To n1 = N1
To n = N
To {A} {B} ix = A
To {A} {B} (lft a) = B a
To (σ a b) = Σ (To a) (\x -> To (b x))
To (π a b) = (x : To a) -> To (b x)
To (w a b) = W (To a) (\x -> To (b x))

]



5.2/ Interpretation of the universes.

To explain the above, we note that the universe

A type x ∶ AÔ⇒ B type
Uo(A, (x)B)

a ∶ A
To(A, (x)B, a) type

has the same closure rules as type universes à la Tarski. In addition it has
constructors for lifting a given family A, (x)B into the universe

ix ∶ Uo(A, (x)B) To(A, (x)B, ix) = A

a ∶ A
lft(a) ∶ Uo(A, (x)B)

a ∶ A
To(A, (x)B, lft(a)) = B(a/x)



5.3/ Interpretation of the universes.

Considering that the set universe V can be obtained by applying a
W-type

data W (A : Set) (B : A -> Set) : Set where
sup : (a : A) -> (b : B a -> W A B) -> W A B

to a type universe, we get a method for constructing a hierarchy of Aczel
universes. This gives us a set universe sV(I ,F ) for each family of types
I ,F .

sV : (I : Set) -> (F : I -> Set) -> Set
sV I F = W (Uo I F) (To {I} {F})



5.4/ Interpretation of the universes.

The elements of the set universe sV(I ,F ) are embedded into V

emb : (I : Set) -> (F : I -> Set) -> sV I F -> V
emb I F (sup A f) = sup (To {I} {F} A) (\x -> emb I F (f x))

and they form a set uV(I ,F ) in V

uV : (I : Set) -> (F : I -> Set) -> V
uV I F = sup (sV I F) (emb I F)

We think of uV(I ,F ) as a constructive version of an inaccessible.



5.5/ Interpretation of the universes.

Iterating the universe building operator

mutual

I- : (k : N) -> Set
I- O = I0
I- (s k) = Uo (I- k) (F- k)

F- : (k : N) -> I- k -> Set
F- O = F0
F- (s k) = To {I- k} {F- k}

(here I0, F0 is an empty family) we then obtain an infinite hierarchy of
inaccessibles

Vk = uV(Ik ,Fk)
in V such that Vk ∈ Vk+1. Each is a transitive set so Vk ⊆ Vk+1 ⊆ V . This
is the basis for the interpretation of the hierarchy of universes.



6/ Prospects for interpretation of further constructions

In view of the following theoretical results we can expect to
interpret further type-constructions:

▸ The set-theoretic universe V has quotients, constructed by
sets of equivalence classes (Aczel and Rathjen 2001)

▸ The set-theoretic universe V admits inductive definitions using
REA (Aczel 1986)

▸ The set-theoretic universe V admits transfinitely iterated
internal set-theoretic universes (Rathjen, Griffor and Palmgren
1998).

Current state of Agda development is available at:

http://staff.math.su.se/palmgren/agda-model.zip


	Representing Sets in Type Theory

