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Abstract
The objective of this article is the presentation of a model based upon a sort of extended

automata product, dedicated to multi-agent systems. We detail the de�nition and notation
enabling the description of a large range of multi-agent systems, as well as the di�erent concepts
and notions usually present in this domain. This work is part of a project called MASE whose
objectives are to develop a model for adaptive multi-agent systems based upon cooperative self-
organisation with emergent functionality, so as to allow their study in a formal way. We are
particularly interested by automated proofs aspects concerning properties stemming from the
dynamic of this kind of systems, more speci�cally concerning the question of the convergence.

1 Introduction
Multi-agents systems [22] [24] are made up of numerous autonomous entities, called agents. Usually,
these agents have to acheive an individual objective while they are interacting each others in a
common environment. Obviously, designers of multi-agent systems want to obtain speci�c global
behaviours from these local activities. This global phenomenum is characterised as emergent if the
way the system exhibits the desired properties is not coded in the agents and, as a consequence, if
it only exists thanks a continuous collective adaptation process. Emergent phenomena correspond
to spontaneous appearance of a global relevant behaviour from local interactions only, when the
local rules of interaction are, a priori, independant and are executed whithout any reference to
the global activity. Our objective is to study such emergent phenomena in multi-agent systems
by modeling them and their environment using a general model, then by developping this general
model to focus on the study of multi-agent systems with emergent fonctionnalities and based on
cooperative self-organisation. Facing this objective, two main questions deserve to be raised:

• Is it possible to de�ne properties the agents must have in order to obtain a speci�c global
property?

• What (and how) can we deduce at the global level from the lower level known properties?

Several speci�c models exist covering a wide range of multi-agent systems: process algebra [20]
[5], cellular or communicating automata, synchronous or asynchronous, graph relabeling or graph
rewriting systems etc. We propose a general model to deal with numerous types of multi-agent
systems. This model can be instanciated to �t with various type of system according to their char-
acteristics. Besides the possibility to allow several kinds of communication and synchronisation,
this model provide a way to characterise, classify and compare di�erent forms of emergence, coop-
eration, non cooperation etc. Considering that we are interested in emergent properties, our model
is de�ned in a bottom-up way, that is to say we made up the model from the de�nition of agents
behaviour and their interactions with other agents and with the environment. Thus, the model is
not based on a global transition system but it is made up from the de�nition of local transitions
from which a global transition system is obtained.



In this article, the model we aim to present is based upon a product of extended automata
[2]. Elementary components describe agents using extended automata (by adding variables) and
enhanced by knowledge and neighbourhood of agents. The set of global con�gurations (or global
states) is composed by arrays of these local con�gurations. The transition relation models the sys-
tem dynamics: transitions are de�ned by pre and post-conditions that describe the transformation
from a starting conf to a another. A �nite set of such rules generates all the reachable transitions
and con�gurations. Thus, the behaviour of the system is described by a transition system ST =
(states, actions, transitions, initial and/or endding states) [2].

Elementary components of the model are presented in the section 2. The third section is
dedicated to the de�nition of the transition system which describe the system operational semantics
thanks writing of rules that generate the transition relation. The way this model can be applied
to multi-agent systems is shown in the section 4. We emphasize the interactions modelling and the
presentation of three agent models (generic agent, BDI agent, cooperative agent). The use of the
model for a simulation of foraging ants is presented in the section 5. Then, we discuss in section
6 the model suitability relating to its application for multi-agent modelling and from the point of
view of concepts expressiveness capabilities.

2 Elementary components
Modelling of multi-agent systems and their behaviours begins by the de�nition of a set I of agent
indenti�ers. This set is de�ned by a integer range I = [n] = {1, ...n}. Development principles of
the model are based on the following choices:

1. Each agent is represented by an automata. While an agent is processing a behaviour, it is in
a particular state.

2. Agent states are extended by the knowledge the agent has about otherselves and of itself.
Moreover, a neighbourhood relation is associated to each state. This extended states are the
local con�gurations.

3. The global behaviour of the system is de�ned from local components: a global con�guration
is an array of local con�gurations and dynamics of the system is described by transitions that
must be compatible with local transitions of each agent.

2.1 Agents and automata
From the set of identi�ers I, a family of automata A = {Ai = (Qi,Σi,→i), i ∈ I} indexed by I
represents the agents. For each automata Ai, are de�ned:

1. Qi, a set of elementary states with which are associated a set of variables V ari.

2. Σi, a set of elementary actions (including the nil action which is noted ∗).
3. →i⊆ Qi×Σi×Qi, a transition relation noted q

a−→i q′ expressing the switching from the state
q to q′ by the elementary action a. For each state, a nil transition is de�ned: q

*−→i q.

Adding a set of variables to states is a way to reduce their number and, as a consequence, to sim-
plify their writing. For instance, de�nition of a state Wait with a ranged waiting time [tmin, tmax]
can be noted Wait[t], that avoids multiple states de�nitions like WaitTMin, WaitTMin+1, ...,
WaitTMax.

2.2 Elementary Con�gurations
For each agent, the set of its elementary (or local) con�gurations is Si ⊆ Qi × Πj∈IRi(j) × 2I , in
which elements for a given agent i are triples si = (qi, ri[], vi), composed as following:

1. qi ∈ Qi is an elementary state;



2. ri[] is an array of local views, where for each j ∈ I we have ri[j] ∈ Ri(j), the set Ri(j) with
the empty view ⊥ ∈ Ri(j) an agent i possesses about an agent j;

3. vi ⊆ I is a set of identi�ers: neighbours of agent i in that con�guration.

For each agent (or type of agent), it is necessary to de�ne what it can know and believe about
other agents. For instance, let's consider a set of situated homogeneous agents that have a set
of states qi to which are associated coordinates of their positions (q[x, y]). A way to store data
about positions could consist in adding yields coordx and coordy into local views of agents. Thus,
ri[j].coordx contains the x value of the agent j position. ri[i].coordx and ri[i].coordy express the
knowledge of agent i about its own position. That knowledge could be inaccurate or false - thus
we called them beliefs -, i.e. ri[i].coordx 6= qi[x] for instance.

Restriction to a subset of agents Local con�guration restriction si = (qi, ri[], vi) to a subset
J ⊆ I such that i ∈ J (noted si/J) is the triple si/J = (qi, ri/J [], vi∩J) in which the array of local
views ri/J [j] is only de�ned for agents j ∈ J with ri/J [j] = ri[j]. That notation is useful to de�ne
application conditions of the rules presented in section 2.3.

2.3 System and global con�gurations
The set of global con�gurations (or global states) is the product Ω = Πi∈ISi of local con�gurations
sets. An element −→s ∈ Ω can also be written −→s = (s1, s2....sn) with |I| = n.

Bringing together the �rst three yields of local con�gurations si = (qi, ri[], vi), −→s ∈ Ω can also
be written −→s = (−→q ,−→r , v) with −→q = (q1, q2....qn), −→r = (r1[], r2[]....rn[]), and v : I 7−→ 2I links each
identi�er with the set of its neighbours.

Thus, global con�gurations can be de�ned by Ω = Πi∈IQi × (Πi∈IΠj 6=iRj) × V in which
V = {I 7−→ 2I} is the set of neighbourhood relations. It is to be noted that an application
v : I 7−→ 2I de�nes a simple oriented graph Gv = (I, v) or G if there is no ambiguity.

Then, the set Ω represents all possible states of the system relating to de�nitions of agents which
are made it up.

Global transitions To express multi-agent system dynamics, we need to de�ne transitions that
enable to move from a global con�guration to another. Thus, we de�ne Act the set of global actions
Act = ∪J⊆I

∏
J Σi. An element of Act is an array of elementary actions (aj)j∈J for a subset J ⊆ I.

The global transition relation is:
−→⊆ Ω×Act× Ω

A triple of this relation is noted:
(s1, s2....sn)

(aj)j∈J−−−−−→ (s′1, s
′
2....s

′
n)

in which J ⊆ I is called the subset of active agents (those that involve in the transition).
Such a transition can also be written:

(−→q ,−→r , v)
(aj)j∈J−−−−−→ (

−→
q′ ,
−→
r′ , v′)

or: −→s a−→ −→
s′

where a = (ai)i∈J .
The underlying graph of a transition is the subgraph from Gv generated by vertices of J ,

Gv/J = (J, v/J).

Consistency between global transitions and elementary ones. We want to restrict global
transitions to the only ones which are consistent with the elementary transitions at the agent level.
Thus, for a global transition (s1, s2....sn)

(aj)j∈J−−−−−→ (s′1, s
′
2....s

′
n), we require that for all i ∈ J , if

si = (qi, ri[], vi) and s′i = (q′i, r
′
i[], v

′
i), then there is a local transition qi

ai−→i q′i, and si = s′i if i /∈ J .
Let Πi∈IAi be the automaton Πi∈IAi = (Πi∈IQi, Act,−→I), where the transition relation −→I

is de�ned by (q1, q2....qn)
(aj)j∈J−−−−−→I (q′1, q

′
2....q

′
n) if and only if for all i ∈ J , there is a local transition

qi
ai−→i q′i, and qj = q′j if j /∈ J . That automaton is called free product of automata (Ai)i∈I and

only contains, by de�nition, transitions which are consistent with elementary transitions.



Thus, the consistent condition is expressed by:
(−→q ,−→r , v)

(aj)j∈J−−−−−→ (
−→
q′ ,
−→
r′ , v′)

only if −→q (aj)j∈J−−−−−→I

−→
q′ , i.e. the global transition relation is consistent with the transition relation

of the free product.

Projection of a con�guration onto a subset of agents Let J = (i1, i2....im) ⊆ I be a subset
of identi�ers, the projection of a con�guration −→s = (s1, s2....sn) onto J is a con�guration of an
agent system that is noted −→s /J = (si1/J, si2/J....sim

/J) in which each elementary con�guration
sik

/J is the restriction of sik
to J de�ned in section 2.2.

If we write −→s = (−→q ,−→r , v) with −→q = (q1, q2....qn), −→r = (r1[], r2[]....rn[]), and v : I 7−→ 2I , then−→s /J can be written: −→s /J = (−→q /J,−→r /J, v/J)
where −→q /J = (qi1 , qi2 ....qim

), −→r /J = (ri1/J [], ri2/J []....rim
/J []), and v/J : J 7−→ 2J is such that

for all i ∈ J , we have v/J(i) = v(i) ∩ J .

3 Transition Relation
To manage the large number of con�gurations and transitions, which is exponential in the number
of local con�gurations, we consider transition rules built up from predicates in order to specify
the transitions �rable from a given con�guration. By iteration these rules generate the set of
con�gurations and transitions reachable from a given initial one.

3.1 Transition Rules
A rule is de�ned by predicates specifying properties of the source con�guration and/or the action
to be executed and/or the target con�guration. These predicates may have a �xed size or a variable
size.

We note Q = ∪i∈IQi, Σ = ∪i∈IΣi, and the set of agent views is denoted R, with ∪i,j∈IRi(j) = R.
The domain of values of the local con�gurations of a system with n agents is denoted

S(n) = Q×Rn × 2[n]

Fixed size rules. Let k be an integer, a rule of size k is a boolean function:
Transθ : S(k)k × Σk × S(k)k −→ {True, False}

or a pair θ = (Precondθ, Postcondθ) of functions:
Precondθ : S(k)k × Σk −→ {True, False}

Postcondθ : S(k)k × S(k)k −→ {True, False}

Variable size rules We have to consider rules for which the number of involved agents is an
integer variable. In this case, predicates Transθ or (Precondθ, Postcondθ) may also depend on this
variable.

A variable size rule is a function:
Transθ : ∪k∈ℵS(k)k × Σk × S(k)k −→ {True, False}

or a pair θ = (Precondθ, Postcondθ) of functions:
Precondθ : ∪k∈ℵS(k)k × Σk −→ {True, False}

Postcondθ : ∪n∈ℵS(k)k × S(k)k −→ {True, False}

Global rules We can de�ne rules θ which apply directly to con�gurations (s1, s2....sn) ∈ Ω with:
Precondθ((si)i∈I , (ai)i∈I) = True

a new con�guration being de�ned by (s′1, s
′
2....s

′
n) ∈ Ω:

Postcondθ((si)i∈I , (s′i)i∈I = True

In that case we write (s1, s2....sn)
(ai)i∈I−−−−→θ (s′1, s

′
2....s

′
n).
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Figure 1: Example of transition induced by a rule

We thus have −→s a−→θ

−→
s′ if and only if:

Precondθ(−→s , a) = True
and

Postcondθ(−→s ,
−→
s′ ) = True

3.2 Application of a rule
A rule Transθ applies to a con�guration −→s = (s1, s2....sn) ∈ Ω yielding the con�guration

−→
s′ =

(s′1, s
′
2....s

′
n) if there is a one-to-one mapping ϕ : [k] 7−→ I with J = ϕ([k]) such that:

Transθ((−→s /J)), (ai)i∈J , (−→s ′i/J)) = True
and such that furthermore for all i ∈ I, sϕ(i)/(I − J) = s′ϕ(i)/(I − J) and for all i ∈ I − J , si = s′i.

We say that the rule θ applies at the occurrence ϕ. In that case the rule induces the global
transition:

(s1, s2....sn)
(ai)i∈J−−−−−→θ (s′1, s

′
2....s

′
n)

A rule (Precondθ, Postcondθ) applies to a con�guration −→s = (s1, s2....sn) ∈ Ω if there is a
one-to-one mapping ϕ : [k] 7−→ I with J = ϕ([k]) such that Precondθ((−→s /J), (ai)i∈J) = True.
The new con�guration (s′1, s

′
2....s

′
n) ∈ Ω being de�ned by:

Postcondθ((−→s /J), (−→s ′/J)) = True
and for all i ∈ I sϕ(i)/(I − J) = s′ϕ(i)/(I − J) and for all i ∈ I − J , si = s′i The use of a rule is
depicted in 1.

In that case we note (s1, s2....sn)
(ai)i∈J−−−−−→θ (s′1, s

′
2....s

′
n).

Types of conditions The predicates of a rule may concern one or more �elds of a con�guration−→s = (−→q ,−→r , v), and express constraints on the local states, the knowledge or the neighbourhood
relation. For instance we can de�ne a predicate

Precondθ : 2[k]×[k] −→ {True, False}
which applies to binary relations between sets with k elements, and which is satis�ed for the
con�guration −→s = (−→q ,−→r , v) by the mapping ϕ : [k] 7−→ I if the neighbourhood relation v restricted
to ϕ([k]) satis�es Precondθ, i.e. Precondθ(v/ϕ([k])) = True.

3.3 Transition relation induced by a set of rules
Let Θ be a set of rules as de�ned above. We note −→Θ the global transition relation −→Θ⊆
Ω×Act× Ω de�ned by −→s a−→Θ

−→
s′ if and only if ∃θ ∈ Θ:−→s a−→θ

−→
s′ .

We write −→s −→Θ

−→
s′ if and only if ∃a ∈ Act:−→s a−→Θ

−→
s′ .

We let Θ(−→s ) be the set of con�gurations directly reachable from −→s : Θ(−→s ) = {−→s′ ∈ Ω : −→s −→Θ−→
s′ } and Θ∗(−→s ) the set of con�gurations reachable from −→s by a sequence of transitions.

Let X ⊆ Ω, the sets of con�gurations Θi+1(X) = Θ(Θi(X))∪Θi(X) for i ∈ ℵ yield the de�nition
of Θ∗(X) = ∪i∈ℵΘi(X)

The transition relation induced by the set of rules Θ, the set of agents {Ai = (Qi,Σi,→i), i ∈ I}
and the initial con�guration −→sin ∈ Πi∈ISi is −→Θ /Θ∗(−→sin)×Act×Θ∗(−→sin).



3.4 Transition systems
At this point we have de�ned I the set of agents identi�ers componing the system ( except environ-
nement denoted Env corresponding to the identi�er 0), {Ai} which de�nes the associated family
of automata , R representing the knowledge domain and Θ containing the transition rules. From
these objects and an initial con�guration, the transition system ST with:

ST = (Ω, Act,−→Θ,−→s in)
constitutes the operational semantics ( behaviour) of the system.

4 A multi-agent systems dedicated model
In this section, we show that the model can be used to express a large number of mecanisms and
properties of multi-agent systems. Our aim is to tackle a panel as large as possible rather than to
enable modelling of a speci�c class of systems.

4.1 The main components
For all multi-agent systems, it is necessary to describe agents behaviour. Then, tools and nota-
tions are needed to manage these behaviours relating to agents dynamics and to the whole system
dynamics. As these considerations were taken into account while the model has been built, these
basic de�nitions and mecanisms are expressed in an easy way.

A multi-agent system SMA is de�ned by SMA = (I, {Ai}, R, Θ,Γ) Elements I, {Ai}, R and
Θ have been explained in the last sections. Predicate Γ is a consistency one that enables to
de�ne global predicate to restrict accessible global con�gurations or to modify conditions of rules
application. Γ is mainly usefull to simplify some properties writing.

For instance, there are several ways to model physical rule such as "two solid entities can't share
a common space". If we consider multi-robot system involved in a real physical environment, our
model has to handle that law (collisions detection, non ubiquity etc.). If local rules are de�ned
to avoid such situations (at automaton level), some problems occur when rules are applied on a
concurrent/asynchronous way. Using Γ, we can tackle this problem by a predicate de�nition that
restricts consistent global con�gurations to con�gurations in which there is not two (or more) robots
in the same place.

4.2 Interactions
Interactions are modelled using transitions in which two (or more) entities are active. If we consider
the modelling of a direct synchronous communication between two agents, that can be written using
a �xed-size rule:

(qi, ri[], vi), (qj , rj [], vj)
(i!j, j?i)−−−−−→ (q′i, r′i[], v′i), (q′j , r′j [], v′j)

with the boolean function related to this speci�c exchange. That rule is applicable to any pair
(i, j) which �ts with the preconditions and postconditions of the rule.

Undirect communications (pheromone deposit, Blackboard etc.) are modelled using rules in
which environment involves. An ant represented by an automaton i performs a pheromone deposit
using a �xed-size rule like

(qEnv, rEnv[], vEnv), (qi, ri[], vi)
(Deposit)−−−−−−→ (q′Env, r′Env[], vEnv), (q′i, r′i[], vi)

.
Interactions which context-dependent "operating �eld" are tackled thanks variable-size rules.

For instance, broadcasting a message to the neighbourhood of a given agent i (whisper) can be
de�ned using a variable-size rule whose conditions concern the neighbourhood vi: active agents will
be whose identi�er j is such that j ∈ vi.

In cellular automata, an agent modi�es its state relating to its neighbours and its own state. In
this case, transitions are de�ned by pairs τ = [(qj)j∈J , q′] where (qj)j∈J is a n-uplet of states and
q′ a new state. A given pair τ de�nes global transitions:

(s1, ..., sk, ...sn)
Updτ (k)−−−−−→ (s1, ..., s

′
k, ..., sn)

where Updτ (k) is an action supported by J = {k} ∪ vk and generated by an agent k and its
neighbours, with sj = (qj ,⊥, vj) far all j ∈ J , and s′k = (q′,⊥, vk).



Figure 2: State graph of an agent

Figure 3: State grpah of a BDI agent

4.3 Some Classic Agent Automata
We also explored the de�nition of some classic automata for the agents. This provides a base to
write automata for a speci�c system deriving from them.

Basic Agent A basic automata can easily be de�ned considering standard Perceive-Decide-Act
life cycle. Figure 2 shows the resulting state graph.

The upper black dot and the transition toward the �rst state q represent the agent creation.
The three following states are labelled by elementary actions Perceive, Decide and Act.

BDI Agent Figure 3 shows a state graph which de�nes an agent based on the Belief-Desire-
Intention model [21]. This graph is obtained by re�ning the decision process (Decide) of the basic
agent. The simple (Decide) transition is rewritten to describe the options generation (Option
Generation) and the intentions �ltrering (Filtering). The �rst phase updates agent desires using
beliefs of the state New Beliefs and the old desires. The second phase selects intentions relating to
beliefs and tanking into account the new desires generate by the last phase. That process brings
the agent in the New Intentions state and, then the agent can act.

Cooperative Agent Here we are interested in modelling cooperative agents as they are de�ned
in the AMAS theory [10]. These cooperative agents have to focus on detection and solving of
non cooperative situations. These non cooperative situations can be classi�ed in three categories
according to the solving actions they can trigger:

1. Regulation: agent modi�es its internal parameters (representations and/or characteristics);



Figure 4: State graph of a cooperative agent

Figure 5: State graph on an ant agent

2. Re-organisation: agent creates or deletes a "work connection" it has with another agent
(agents organisation topology is changed);

3. Evolution: agent adds a new agent into the system or it disappears from the system.

"Unfolding" the graph to add states related to non cooperative situations processing, we can
de�ne the generic state graph for an automaton whose general behaviour is compliant to the AMAS
cooperative agents.

The resulting graph is presented in �gure 4. The decision-related phase is enriched with several
states and transitions. After the perception phase (action labelled Perceive), the agent is in the
DetectNCS state during which it analyses non cooperative situations. If there is none such a
situation, the agent processes the transition (qDetectNCS

Decide−−−−→ qNominal) to execute its nominal
behaviour. Else, agent forks for the state that �ts with the detecting non cooperative situation
(Regulation, Re-organisation, Evolution). For a given problem, this graph can be "unfolded" again
in order to describe more precisely some states.

5 Illustrating example
We are detailing here a model of a multi-agent system simulating the foraging activity of an ant
hill. This model aims not at being exhaustive but complete enough to concretely present each
element of our generic model. In this example, ants are homogeneous agents which are exploring
the territory in search of food zones so as to bring it back to the nest. The state graph of an agent
is thus described in �gure 5.

In accordance to the generic model, we de�ne the multi-agent system as ANT = (I, {Ai}, R, Θ, Γ)
with:

1. I : the set of identifying symbols for the agents (ant and environment). The ant agents
are simply numbered. I = {1, ...n} ∪ Env with n the number of foraging ants and Env the
environment;



2. {Ai} : the set of automata of the agents. All the ants being homogeneous, there is only one
class of elementary automata to represent their behaviour, the one in �gure 5. We do not
present the automaton of the environment here. For i ∈ 1...n, Ai = (Qi,Σi,→i) with:

(a) Qi : the set of elementary states with associated variables representing some character-
istics of an agent. The states are qRest, qExploration, qPheromoneFollowing, qFoodFollowing,
qForraging, qReturn. For example, q[PheromoneDrop] is an associated variable to all
the states. It is indicating the quantity of pheromone dropped by the agent. Thus,
when the agent changes from state qExploration to state qFoodFollowing, it drops more
pheromone: qFoodFollowing[PheromoneDrop] = qExploration[PheromoneDrop] + incr,
incr being the increment value. Another associated variable is the position of the agent,
noted q[Position];

(b) Σi : the set of elementary actions containing the actions allowing to change from one
elementary state to another, for example aExit, aDetectFood,... (cf. �gure5), as well as
other actions in relation to the associated variables or to elementary con�gurations, for
example aIncrPheromone;

(c) →i : the transition relations describing the sate graph, for example
qExploration

aDetectF ood−−−−−−−→i qFoodFollowing ;

3. R : the set of views of the agents, i.e. the representations of the agents concerning the
other agents or the environment. For example ri[Env][Pheromone] represents the quantity
of pheromone detected by the agent i in the environment Env;

4. Si : the set of elementary con�gurations. With Qi, Ri and by adding the neighbourhood of an
agent vi, we can describe an elementary con�guration of an agent in the system as following:
si = (qi, ri[], vi). This represents the whole life cycle of an agent in the system.

5. Θ : the set of transitions rules enabling the evolution of the elementary con�gurations. For
example, to represent the detection and following of food, we note it:

(qExploration, ri[], vi)
(aDetectF ood)−−−−−−−−−→ (qFoodFollowing, ri[], vi)

Precond : ri[Env][Food] = true
Postcond : qFoodFollowing[PheromoneDrop] = qExploration[PheromoneDrop] + incr;

6. Γ : the coherence predicate. If we want to prevent two agents from being at the same coor-
dinates at the same time, we can note it:

Γ = (qi[Position] 6= qj [Position]).

6 Concepts and notions
There are numerous concepts and notions used in the domain of Multi-Agent Systems that we can
not explore exhaustively in this paper. Nevertheless, we can provide some elements (sometimes in
an informal way) concerning the expression of some important ones among them.

Environment. We can de�ne a model of the environment [23] with a particular automaton of
the systems (typically, the automaton A0 also noted Env by commodity). For certain ap-
plications in which the environment has to be distributed, nothing prevents from translating
this distribution by associating di�erent automata to the di�erent "parts" of the environ-
ment. The accessibility of these "parts" by the agents are given by the neighbourhoods of
the agents. The dynamic nature of the environment can be identi�ed by the existence of
transitions in which only the agent corresponding to the environment is modi�ed (or rules
for which Transθ concerns exclusively local con�gurations of Env).

Autonomy. The question of autonomy [7] is a delicate one to treat. Indeed, to judge that a system
(or an agent) is autonomous or not can be strongly subjective. The autonomy of decision
of an agent could be translated by the fact that no elementary transition labelled Decide
(after matching the model with the simple agent model type) is used by rules with conditions
concerning local con�gurations other than the considered agent.



Reorganisation, self-organisation. Reorganisation processes are translated in our model by the
application of transitions modifying the neighbourhoods of the agents. The analysis of the
decision processes leading to modi�cations of the neighbourhoods should allow to distinguish
self-organising systems from others.

Cognitive agent, reactive agent. Both of these agents types can be described in the model.
Being able to identify that the automaton associated to an agent describes a reactive or
cognitive (or deliberative) architecture could be achieved by de�ning abstraction operations
(or "folding") to match the state graph of an automaton to state graphs typical of these
architectures.

Cooperation and functional adequacy. Cooperation in the scope of adaptive multi-agent sys-
tems [6] will be a major centre of interests in our work. This study will need to associate
an evaluation function of cooperation (or non-cooperation) to the local con�gurations (based
upon the representations ri[]) to de�ne the notion of a cooperative agent. To de�ne the no-
tion of a system being in an internal cooperative state, the association will be at the level
of the multi-agent system (at the level of the set of local con�guration associated to the
agents, the environment being excluded). The notion of functional adequacy of a multi-agent
system should be measurable using an evaluation of the global con�gurations (they contain
the environment and the multi-agent system, thus also representing the interaction of the
multi-agent system and the environment). The de�nition of a cooperative system (and not
only the de�nition of an internally cooperative system) will have to use a projection on the
sole local con�gurations having the environment in their neighbourhood and an evaluation of
the cooperation of these local con�gurations relative to the environment (evaluation of the
"frontier" between the multi-agent system and the environment).

Emergence. Studies related to Emergence can focus on the detection of speci�c attributes of the
states of the system (global con�gurations) and on the analysis of the dynamics responsible
for the apparition of these phenomena by studying the behaviours (a sequence of transitions)
producing them. The de�nition of Emergence for arti�cial systems as given in [15] could also
provide means to distringuish emergent systems from those who are not.

Reliability, robustness, convergence. These notions can be de�ned by properties related to the
accessibility of speci�c sets of con�gurations and the sequence of transitions leading to them.
The use of modal and temporal logics in this framework would allow the use of automatic
proof tools.

Interoperability, adaptivity. We can de�ne such systems with the model but it seems unlikely
that we will be able to formalise these properties.

Openness. The current model does not allow the expression of appearance or disappearance of
agents in a strictly true manner. Nevertheless, by adding an Out state to the graph of the
automata, it is possible to simulate these mechanisms: when an automaton is inactive, it is
considered as not being part of the system any more, leaving this particular state corresponds
to the creation of the agent and entering it as a removal. The strong constraint is that we have
to maintain the "ghost" automata in the model even when they are not used (and we have
to plan enough of them as an "agent reserve"). Still, since we use rules based on conditions,
the systematic addition of tests excluding automata in Out state is enough.

Implementation/Simulation. It is possible to de�ne these notions by transition systems mor-
phisms. A morphism of a system ST = (Ω, Act,−→,−→s in) to ST ′ = (Ω′, Act′,−→′,−→s ′in) is a
couple of applications (σ, ρ): σ : Ω −→ Ω′, ρ : Act −→ Act′ such as:

• σ(−→s in) = −→s ′in and

• If ρ(a) is not the "null" global action : −→s 0
a−→ −→s 1 =⇒ σ(−→s 0)

ρ(a)−−→ σ(−→s 1)
If ρ(a) is the "null" global action: −→s 0

a−→ −→s 1 =⇒ σ(−→s 0) = σ(−→s 1).

It can be noted that several di�erent implementations of the same system can exist. The
interesting part here is that it provides a simple means to establish that two transitions



systems are describing the same system but with a di�erent "precision" or di�erent processes.
This can be of importance for the validation of the adequacy of a multi-agent system being
proposed to solve a speci�c problem: we can prove the existence of a couple (σ, ρ) showing
that the model of the system is truly implementing the model of the proble.

7 Analysis and conclusion
We presented in this paper the de�nitions and notations which describe a general model based on
a form of extended automata product dedicated to a wide range of multi-agent systems.

Current agent and multi-agent models are either informal or considering speci�c aspects. Some
are agent centred like the BDI model [1], others focus on interaction, in�uence [14], dependences
[8] [18] or organisations and roles [19]... The majority of formal models are based on logic and
presuppose that the memory of an agent is in�nite, as well as that the agent has no temporal
constrains. Other models are based on formal languages like Z [17], OZS [12] and have as an
objective to facilitate the validation and veri�cation during the design and implementation of the
associated software. The model we propose is a general model, not dedicated in any way to a
speci�c agent system architecture. Its objective is to be a tool for the veri�cation of properties
at the agent level as well as at the system level, and therefore to enable to better understand the
relations between the micro-level (the agents) and the macro-level (the system) where can occur
some emergent phenomena.

One of the advantages to use a transition system and automata to model a multi-agent system
is the possibility for automated proof and the use of model-checking tools. In numerous tools,
systems are extended forms of automata and transitions are described as we do by pre-conditions
on a starting state and the transformation of this state in a destination state. These systems also
enable the use of most temporal logics, linear or not. It can be noted that, because the model takes
place at the level of each agent, it becomes possible to prove properties like convergence, for example,
for multi-agent systems with an emergent functionality. Automated proof tools are numerous, each
with is speci�cities: SPIN [13] (on-the-�y proofs), MEC 5 [11] (expressiveness), NuSMV 2 [9] (open
kernel which can be integrated in other tools), PRISM [16] (stochastic), UPPAAL [4] (temporal),
Kronos [25] (real time systems), TINA [3] (Petri net)... Because of the generic nature of the model,
all the proof tools seem to be relevant and the choice will depend on properties to be proved and
speci�cities of the systems of which we are building a model.

The next step concerns automated proofs of properties related to the dynamics of adaptive
multi-agent systems with an emergent functionality based on cooperative self-organisation, and in
particular of the question of convergence of such systems.
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