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Abstract

An overview of some fuzzy set-based approaches to scheduling is proposed, emphasizing two distinct uses of fuzzy

sets: representing preference profiles and modelling uncertainty distributions. The first setting leads to a valued, non-

compensatory generalization of constraint-directed scheduling. The other setting yields a possibility-theoretic coun-

terpart of PERT, where probability distributions of activity durations are changed into possibility distributions, for the

purpose of modelling incomplete information. It is pointed out that a special case of the latter, interval-valued PERT, is

a difficult, ill-known problem, regarding the determination of critical activities, latest starting times and floats. Lastly

when flexible constraints and uncertain processing times are to be jointly considered, the use of possibilistic decision

theory leads to the computation of robust schedules.
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1. Introduction

Classical formulations of scheduling problems can be split into two trends: the optimisation of a single
criterion, such as the makespan, for instance, and the constraint-directed approach under time and resource

constraints. In the first approach, by far the most usual one, an interesting schedule is produced. But it is

not always useful in practice because other down-to-earth criteria have been neglected. In the second ap-

proach, local specifications can be expressed, but there are two potential pitfalls: one is not to find any

solution to the set of constraints despite extensive computation if the problem is overconstrained; the other

difficulty is when there are too many solutions, so that the user, whose preferences have not been modelled,

cannot easily decide. A third approach to scheduling uses priority rules (MacCarthy and Liu, 1993), but

then it is difficult to understand what kind of criterion is at stake, and to what extent a solution is better
than another, although the approach is computationally attractive. Moreover, scheduling is often stated as

a deterministic problem and assumes precise knowledge of the data such as task durations, due-dates etc.

* Corresponding author. Tel.: +33-61-556-331; fax: +33-61-556-239.

E-mail address: dubois@irit.fr (D. Dubois).

0377-2217/03/$ - see front matter � 2002 Elsevier Science B.V. All rights reserved.

PII: S0377-2217 (02 )00558-1

European Journal of Operational Research 147 (2003) 231–252

www.elsevier.com/locate/dsw

mail to: dubois@irit.fr


There are stochastic versions of scheduling problems (Lootsma, 1989; Birge and Dempster, 1996), but they

are hard to compute in practice, because some deterministic scheduling problems are already very hard.

Resorting to fuzzy set and possibility theory may help building a tradeoff between the expressive power

and the computational difficulties of stochastic scheduling techniques while tackling uncertainty and ac-

counting for local specifications of preferences. This kind of methodology is not yet so common in oper-
ational research, even if quite a few works in fuzzy PERT–CPM and other types of fuzzy scheduling

methods have been around for more than two decades (Dubois and Prade, 1978; Prade, 1979). Overviews

on various aspects of fuzzy scheduling can be found in the book by Lootsma (1997), a recent edited volume

(Slowinski and Hapke, 2000) and papers by Chanas and Kuchta (1998) on graph-theoretic aspects, Werners

and Weber (1999) on fuzzy project management and Turksen and Fazel Zarandi (1999) on fuzzy rule-based

production management. An abundant bibliography on fuzzy set applications in production management

is supplied in Guiffrida and Nagi (1998).

One difficulty with fuzzy scheduling is to figure out what problem is really addressed in the various works
found in the literature. If we set aside the use of fuzzy sets in the modelling of priority rules applied to

deterministic formulations, fuzzy scheduling addresses two very distinct issues: scheduling under flexible

constraints and scheduling under incomplete or imprecise information. In the first group of papers, fuzzy

sets are used to model local or global requirements in the form of flexible constraints (Zadeh, 1975; Dubois

et al., 1996) and the problem is to find the best schedule that achieves a compromise between these re-

quirements. This methodology is akin to constraint directed methods, and includes the optimisation of a

single criterion as a particular case. In the second group of papers, the aim is to analyse the main char-

acteristics of a scheduling problem (minimal makespan, critical paths, earliest and latest starting times of
tasks, etc.) when data, especially task durations, are ill-known and modelled by fuzzy intervals, in the

setting of possibility theory (Zadeh, 1978; Dubois and Prade, 1988). Possibility theory proposes a natural

framework, simpler and less data-demanding than probability theory, for handling incomplete knowledge

about scheduling data.

Since flexible constraints and uncertain data can be modelled by fuzzy sets, there is a risk of confusing

the two purposes of fuzzy modelling in scheduling problems. Indeed, in the scope of decision theory, fuzzy

sets can be used either as substitute of utility functions or as substitute of probability functions. It reflects

the ambiguity of membership functions, that can be used both for preference modelling and for uncertainty
handling. Yet, some scheduling problems involve both flexible constraints and uncertain data. Then, in-

stead of optimizing average behaviors like in stochastic scheduling, fuzzy techniques rather aim at finding

robust fault-tolerant schedules where all constraints are satisfied to some extent, with a sufficient level of

confidence.

This paper is a structured discussion of the state of the art in the fuzzy scheduling literature with a stress

on the distinction between preference modelling and uncertainty analysis using fuzzy set-based methods.

The next section outlines the flexible constraint methodology in scheduling problems without, and then

with, limited resources. Section 3 is devoted to the possibilistic uncertainty analysis of scheduling problems.
It is shown that although many works exist along this line, a full-fledged critical path analysis under un-

certainty has not been proposed yet. Nevertheless, very recent works come to grip with this matter. Lastly

the hybrid problem of scheduling under incomplete information and flexible constraints is discussed.

2. Scheduling under flexible constraints

Using flexible constraints in scheduling (in production engineering, and also in project management) is a
way of coping with the limitations of classical formal statements of scheduling problems. Finding the

optimal schedule in the sense of a unique criteria does not account for the fact that very often, a schedule is

better than another in practice because it better fulfills local requirements that are not modelled by the
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objective function. Constraint-directed approaches (Erschler et al., 1976; Erschler and Esquirol, 1986;

Esquirol and Lopez, 1999; Fox, 1987) do account for the presence of local requirements. However they do

it in a crude, all-or-nothing manner while optimisation approaches evaluate the worth of schedules in a

more refined way. Using flexible constraints preserves the idea that the worth of a schedule is a matter of

degree, while remaining faithful to the spirit of constraint-directed modelling where there is no compen-
sation between the satisfaction of local antagonistic constraints. We successively deal with the case of

unlimited resources constraints and then the case of limited resources.

2.1. The flexible constraint view of fuzzy PERT

Consider a set of activities (or tasks) related by precedence constraints expressing that some activities

cannot start before the end of others. Each activity i is assigned a duration pi. This partially ordered set

models a project (or a job in the production engineering context). Usually, two fictitious tasks a and x of
null duration are added to this set, standing for the starting point and the ending point of the project,

respectively: a precedes all activities, and x takes place after all activities. When resource constraints are not

taken into account, a project is thus modelled by a directed acyclic graph G whose nodes represent activities

and arcs stand for precedence relations. Let SuccðiÞ (resp. PredðiÞ) denote the set of activities immediately

following (resp. preceding) activity i, while SUCCðiÞ (resp. PREDðiÞ) denote set of all activities taking place

after (resp. before) activity i. Given two activities i and j in the graph, let Cði; jÞ denote the set of all paths

from i to j, t�j and tþj earliest and latest starting times of activity j. The float of activity j is fj ¼ tþj � t�j . An

activity is said to be critical whenever its float is zero.
The particular scheduling problem considered here is that of determining feasible values for the starting

times ti of activities, and possibly feasible values of the activity durations, under various constraints in-

cluding some on the launching date ta and the ending date tx of the project. It is indeed assumed that the

project can be launched only after a prescribed release date r and must be finished before a prescribed due-

date d. Hence the additional constraints:

Relase date constraint : ta P r; ð1Þ

Due-date constraint : tx 6 d: ð2Þ

This simple constraint satisfaction problem may fail to have solutions, in terms of feasible starting times

ti and durations pi. The earliest starting time of each activity i only depend on the durations of activities in

PREDðiÞ and the release date, while the latest starting time of activity i is a function of the durations of

activities in SUCCðiÞ, the duration pi, and the due-date. If the earliest starting time of some activity is larger
than its latest starting time, it means that the problem is unfeasible, and these activities have negative floats.

On the contrary, for some data sets, there are no critical tasks.

2.1.1. Modelling flexible requirements

If there are specific temporal constraints on some activities such as local release dates ri (availability of

raw material) or due-dates di (status review dates) there may be additional constraints under the form of

local feasibility windows:

ri6 ti6 di � pi: ð3Þ

In practice, such constraints are often flexible. The feasibility window ½r; d� in which a project much be

carried out is made flexible if preferences of suppliers or customers are accounted for. A customer places an

order with a given due-date, which is the preferred delivery date d�; but a certain delay is tolerable up to a

later date d beyond which the order will be canceled, because this customer will have settled the matter via
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some other supplier, for instance. As time passes between the preferred delivery date and the maximal due-

date, the customer satisfaction decreases until it vanishes at the latter. The greater the delay, the lower the

satisfaction. Such a decreasing preference profile is pictured on Fig. 1. It takes the form of a fuzzy set D
with a decreasing membership function expressing a flexible threshold ‘‘less than’’. It should be obtained

after some negotiation with the customer. This is the global flexible due-date, that results in a specific

satisfaction level satðtxÞ ¼ lDðtxÞ for the ending date of the project.

Supplier preferences for delivery dates that affect the starting of activities are modelled similarly. For

suppliers, the later a delivery date, the better, so as to avoid tight schedules. A flexible release date con-

straint takes the form of a fuzzy set R with an increasing membership function expressing a flexible

threshold ‘‘greater than’’. For instance, it results in a specific satisfaction level satðtaÞ ¼ lR;ðtaÞ, for the

starting date of the project. Clearly, lRðtaÞ ¼ 0 if ta 6 r (impossible to start before r), and lRðtaÞ ¼
1 if ta P r� (more sensible to start after r�). Fuzzy release date and due-date constraints form a flexible time

horizon where the project is bound to take place.

Besides, durations of activities are sometimes controlable, hence are a matter of preference as well.

For instance, tuning the speed of a machine-tool may affect the duration of a machining operation; set-

ting the temperature of an oven affects the duration of a drying operation; assigning more or less staff to a

man-made activity also changes the activity duration. The basic local criterion involved here is the quality

of the result obtained by the activity, the comfort or the safety of the people involved in it. For each ac-

tivity, there may exist optimal values of the duration that achieve such goals, and some values that are less
recommended (not quite within strict quality or safety bounds). The preference profile pertaining to an

activity duration can be modelled by a fuzzy interval (see Appendix A) Pi: a choice of the duration pi for

activity i is fully satisfactory if it lies in the core of Pi containing the best values ðlPiðpiÞ ¼ 1Þ. Such a choice

is forbidden if it is outside the support of PiðlPiðpiÞ ¼ 0Þ. The closer to the core of Pi is the choice of pi, the

better. Each such specification on the duration leads to a local flexible constraint with satisfaction level:

satðpiÞ ¼ lPiðpiÞ.
Generally, the useful part of the fuzzy interval Pi is its increasing side, since the other one is not con-

flicting with the fuzzy realizability windows. It expresses the following kind of requirement: the longer the
duration, the better the quality (but the more likely it conflicts with other temporal constraints). Everything

being equal otherwise, the lowest value of processing time should be chosen, as it allows for larger slack

times in the schedule, hence for better satisfaction of the ready date and the due-date. In this Section, we

shall assume that membership function of processing times have increasing membership functions ex-

pressing flexible thresholds ‘‘greater than’’.

To summarize, various kinds of requirements can be modelled for the choice of starting times and

durations of activities. The problem is to find a schedule that best satisfies all above requirements coming

from customers, suppliers and the project manager.

Fig. 1. Flexible due-date constraint.
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2.1.2. Solving the flexibly constrained scheduling problem

In this context, a potential solution to the problem is a choice s ¼ ðta; . . . ; tx; pa; . . . ; pxÞ of starting times

and processing times for activities. They must satisfy hard precedence constraints expressed by the graph,

and flexible constraints induced by release dates and due-dates described above. In accordance with the
constraint-directed view, the problem is stated as one of maximin optimisation (Bellman and Zadeh, 1970):

the degree of satisfaction of potential solution s is the degree of satisfaction of the least satisfied constraint:

satðsÞ ¼ 0 if s ¼ ðta; . . . ; tx; pa; . . . ; pxÞ violates a single precedence constraint. Otherwise:

satðsÞ ¼ minðmin
i

lPiðpiÞ; lDðtxÞ; lRðtaÞÞ: ð4Þ

Local fuzzy feasibility windows defined by local constraints Ri and Di on release dates and due-dates for

activities could be accounted for, but are not here for simplicity. The problem to maximize satðsÞ. This is a

particular kind of fuzzy linear programming problem in the sense of Zimmermann (1985) that can be solved

via fuzzy constraint propagation techniques (Dubois et al., 1995). The consistency degree cons ¼ sups satðsÞ
of the problem evaluates the level of feasibility of the scheduling problem. When constraints are partially

incompatible, 0 < cons < 1, because no choice of s can fully satisfy all the constraints. Then, a kind of

automatic relaxation of constraints is performed aiming at finding values of starting times or processing

times that remain in the vicinity of the unreachable ideal values.

This formulation of the flexible scheduling problem tends to balance the levels of satisfaction across

constraints for the sake of not violating any. It contrasts with additive approaches, maximizing the sum of

local satisfaction levels (Sadeh and Fox, 1996). In this case degrees of membership would model rewards

(depending on costs). Maximizing the sum of membership grades may produce optimal schedules where
lPiðpiÞ ¼ 0 for some activity i, or whose launching date or release date is unfeasible, which contradicts the

spirit of constraint-directed solving.

For solving the problem in practice, it is possible to come down to finding choices of starting times

t ¼ ðta; . . . ; txÞ first, using a constraint propagation step that gets rid processing times. The choice of a

vector of starting times t is feasible provided that there exists a choice p ¼ ðpa; . . . ; pxÞ of processing times

such that the solution s ¼ ðp; tÞ is optimal:

satðtÞ ¼ sup
p

satðt; pÞ ¼ cons: ð5Þ

It can be shown that (Dubois et al., 1995)

satðtÞ ¼ min
ðj;kÞ such that j2PredðkÞ

minðlPjðtk � tjÞ; lDðtxÞ; lR;ðtaÞÞ: ð6Þ

It comes down to a scheduling problem involving only starting times, where each precedence constraint

has become flexible:

ðtj � tiÞP Pi ð7Þ
with satisfaction degree lPiðtj � tiÞ. The fuzzy constraint propagation approach enables a fuzzy set of more

or less feasible starting times to be computed rather than just the optimal ones, which is more valuable for

the user. The starting time ti of activity i is constrained by the earliest ending times of activities in PREDðiÞ
and the latest starting times of activities in SUCCðiÞ. Earliest ending times in PREDðiÞ and latest starting

times in SUCCðiÞ are independent quantities here. These parameters are modelled by fuzzy earliest starting
times T�

i and latest starting times Tþ
i . They can be computed by a straightforward extension of the standard

forward and backward recursive schemes, performed independently, using fuzzy additions and subtractions

and the fuzzy extensions of the minimum and the maximum operations (see Appendix A):

T�
i ¼ gmaxmaxj2PredðiÞT�

j 
 Pj for i > a; and T�
a ¼ R; ð8Þ

Tþ
i ¼ gminminj2SuccðiÞTþ

j HPi for i < x; and Tþ
x ¼ D: ð9Þ
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If available, independent local fuzzy constraints on release dates Ri and due-dates Di activities could be

accounted for in (8) and (9), respectively. The obtained membership functions of T�
i and Tþ

i are respectively

increasing and decreasing. Then the local satisfaction degree satðtiÞ of a choice of the starting time Ti of

activity i reads:

satðtiÞ ¼ sup
tj:j6¼i

satðta; . . . ; txÞ ¼ minðlþ
Ti
ðtiÞ; l�

Ti
ðtiÞÞ: ð10Þ

The set of more or less preferred values of the starting time ti of activity i is the fuzzy set T�
i \ Tþ

i , and

satðtiÞ is the height of this fuzzy set. The overall consistency level can computed at the end of the forward

propagation, for instance: it is the height of the fuzzy set T�
x \ D, from which the preferred ending date of

the project is obtained.

If 0 < cons < 1, precise optimal values of starting times ti ¼ l�1
Ti�

ðconsÞ or processing times pi ¼ l�1
Pi
ðconsÞ

can be computed (if cons ¼ 1, intervals are obtained). Processing times are obtained by inverting the

membership function of Pi�s at level cons. Earliest starting times are similarly obtained from T�
i �s, thus

yielding a deterministic PERT network. Nevertheless, if the so-computed schedule is indeed optimal in the
sense of the ‘‘bottleneck’’ criterion (4) it may fail to be Pareto-optimal in the sense of the vector optimi-

sation problem based on the set of membership functions that define the various flexible constraints. In-

deed, only the starting times and processing times of critical activities (those s.t. ti þ pi ¼ l�1
Tþ
i
ðconsÞ) cannot

be improved. They form a set of critical paths in the defuzzified nework, in the usual sense. It is possible to

lengthen the processing times of non-critical tasks thus increasing their membership values lPiðpiÞ. To this

end, another flexible scheduling problem can be solved where all durations of critical activities are fixed to

pi ¼ l�1
Pi
ðconsÞ, and the feasibility window of the project is set to ½r; d� ¼ ½l�1

R ðconsÞ, l�1
D ðconsÞ�. If cons < 1,

a unique Pareto-optimal solution can thus be calculated by proceeding in a recursive way until all tasks are
(artificially) made critical (see Dubois and Fortemps, 1999). More general kinds of fuzzy scheduling

problems are described by Wang and Fu (1996). Their aim is to minimize costs under flexible constraints on

activity times or available budget. The adopted methodology fuzzy linear programming.

2.2. Flexible constraint-based scheduling under limited resources

The main difficulty of scheduling problems lies in the necessity of performing activities under limited

resources. Here we only consider the case of renewable resources, that are again fully available at the end of
the activity that used them. Basically resources are machines, tools, or human operators. We focus on the

case of disjunctive constraints which prevent two activities from using the same resource simultaneously,

without prescribing any precedence between them.

The flexible constraint methodology straightforwardly extends to resource-constrained scheduling

problems, such as flow-shops and job-shops. Then resources are precisely machines, each activity requiring

a machine during the time when it is performed. The basic idea for solving such scheduling problems under

flexible constraints is to solve all fuzzy scheduling problems obtained by sequencing the set of tasks assigned

to each machine. Each sequencing leads to an optimal choice of starting times and processing times of
activities, in the sense of the maximin criterion, and the best sequencing can be laid bare. Methods differ by

the way the set of possible sequencings is explored. Ishii et al. (1992) consider one-machine scheduling

problems with fuzzy due-dates. It is extended to the case of flow-shop problems by Ishibuchi et al. (1994)

who use various metaheuristics. The case of jobshop scheduling under fuzzy constraints on due-dates,

release dates and processing times is considered by Dubois et al. (1995). The solving method is an enu-

meration procedure based on a sequence of fuzzy constraint propagation steps that update fuzzy earliest

starting time and latest starting time of activities, and decision steps that solve disjunctive constraints, using

fuzzy extensions of look-ahead procedures coming from constraint-directed scheduling methods (Erschler
et al., 1976). For instance, each pair of activities on a machine is tested to see if they both fit in the current

(fuzzy) window allocated to them. This test often enforces a sequencing of these two activities, or, in the
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fuzzy case, suggests it more or less strongly. Other applications of fuzzy constraints to scheduling include

Litoiu and Tadei (1997) (real-time periodic scheduling), Hintz and Zimmermann (1989) (master scheduling

in flexible manufacturing systems), Slany (1996) (scheduling using a generic fuzzy constraint-directed

problem solver). Fargier (1997) reports on systematic experiments in jobshop scheduling with a fuzzily

constrained makespan, and shows that the use of fuzzy constraints generally accelerates the discovery of a
feasible solution, as opposed to the hard constraint versions of the same problems, and that this solution is

found in the middle of the feasibility domain, while the hard version tends to find solutions on the bor-

derline of the feasibility domain.

In contrast with the fuzzy constraint-directed approach, several authors have used fuzzy sets at the

control level, in the modelling of priority rules, applied to deterministic scheduling problems. This topic is

out of the scope of this overview, but deserves some comments. Fuzzy priority rules have two merits: first,

as usual with fuzzy rules, threshold effects are avoided; second, blending priority rules is made easier.

Degrees of applicability of various rules to a situation can be computed, scaled, and combined with various
weights in order rank sequencing decisions. Since the effect of individual priority rules on the attainment of

various production goals is not so clear, the weighting and blending of fuzzy priority rules are far from

being trivial problems. Bensana et al. (1988) combine a constraint-directed approach and a set of fuzzy

priority rules whose results are aggregated by means of a majority technique, to solve jobshop scheduling

problems. Voting methods for priority rule aggregations are explored by Dubois and Koning (1994). The

empirical determination weights in the blending of priority rules is studied by Grabot and Geneste (1994)

using neural network algorithms. They show that weights depend on the amount of resources, of the

variance of activity durations, and the objective which is aimed at. The use of approximate reasoning
methods in the style of fuzzy logic controllers, applied to various kinds of scheduling problems has been

extensively studied by Turksen. See the survey in Turksen and Fazel Zarandi (1999).

3. Fuzzy scheduling with ill-known processing times

A very different use of fuzzy sets in scheduling problems is when activity durations ill-known at the

moment when a predictive schedule must be devised, and that this lack of knowledge must be dealt with as
such. It may also be the case that processing times have unpredictable variability. For instance, this is true

for subcontracted activities in manufacturing environment, for debugging tasks in software engineering,

and for activities to which resources have not been assigned to yet. Then, processing times are no longer

considered as decision variables, but the problem is to cope with the uncertainty pervading them. Modelling

an ill-known processing time by a probability distribution presupposes much knowledge (for instance

statistical), or a devoted Bayesian decision-maker. In most cases, there is little knowledge available, and the

crudest representation is a human-originated confidence interval which is supposed to contain the even-

tually observed value of a processing time, with sufficient certainty. In the case, when some values appear
more plausible than others, the natural extension of an interval is a fuzzy interval (Dubois and Prade, 1980,

1988; Dubois et al., 2000), that is, a possibility distribution representing more or less plausible values,

viewed as a nested family of confidence intervals (see Appendix A).

Two kinds of scheduling problems have been addressed in this setting: the minimization of the make-

span, and the determination of a robust schedule under fuzzy constraints. We first consider the case of

makespan minimization with unlimited resources.

3.1. Critical path analysis with ill-known processing times

Strangely enough, the PERT analysis with ill-known processing times modelled by simple intervals does

not seem to have received much attention in the literature. Yet, the predictive computation of the minimal
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completion time of a project, the determination of critical paths and activities, the determination of activity

floats have been considered as important problems and have been widely acknowledged to be pervaded

with uncertainty. However the overwhelming part of the literature devoted to this topic adopts an orthodox

stochastic approach, thus leading to a very complex problem that is still partially unsolved to-date. Until

recently, and to the best of the authors� knowledge, interval-valued PERT analysis seems to have existed
only as a special case of fuzzy PERT studies that appeared in the late seventies. However, as seen below, the

main difficulty of the criticality analysis problem in fuzzy PERT, when fuzzy intervals represent ill-known

processing times, does not lie in introduction of fuzzy sets. It is already present when only usual intervals

are involved. Solving the interval valued case is the main difficulty. The fuzzy case can then be rather easily

solved, via the use of level-cuts.

Modelling ill-known processing times with fuzzy numbers is rather simple. It is justified by the limited

expressive power of intervals: if too small, there is little confidence in them, too large, they are not in-

formative enough to be exploited. Rommelfanger (1990) suggests the use of three confidence intervals: the
core, containing typical values, the 0.5 level cut, containing unsurprizing values, and the support, outside

which values are physically unattainable. It provides six parameters and the fuzzy interval is obtained by

means of linear interpolation. A simpler model is the triangular fuzzy number using an interval and a

plausible value in it.

The past fuzzy PERT literature has sometimes relied on the assumption that, since in deterministic

PERT, most parameters of interest are obtained by means of simple algorithms involving addition, sub-

traction, minimum and maximum, the same algorithms, once fuzzified, can be straighforwardly used: the

same calculations can be carried out, changing numbers into fuzzy numbers, exploiting results in fuzzy
arithmetics (as done in the previous section in presence of fuzzy constraints).

The first interesting problem is that of computing the fuzzy completion time of the project. It is the

possibility distribution of the minimal completion time. There is no constraint on the release date nor on the

ending date. This question, and the related one of finding the shortest or the longest distance between nodes

in a graph with fuzzy-valued arcs, is easy (contrary to the same question in stochastic PERT) and has been

solved for a long time (Chanas and Kamburowski, 1981; Dubois and Prade, 1978, 1980; Gazdik, 1983;

Mares, 1989). It is then assumed that the project starts at time 0, so that

t�a ¼ 0 ð11Þ
Let Cða; iÞ be the set of paths (activity sequences) from the initial task to activity i. When processing times

are precisely known the earliest starting time of activity i is the maximal length Lða; iÞ of paths in Cða; iÞ,
supposing that arcs (i,j) are assigned length pi. The minimal completion time is the maximal length Lða;xÞ
of paths C in Cða;xÞ. When processing times are fuzzy, the length of path C is easily defined by adding the

fuzzy numbers representing the processing times of activities in C, and applying the extended maximum:

LðCÞ ¼ 
i2CPi and Lða;xÞ ¼ gmaxmaxC2Cða;xÞLðCÞ:
The possibility distribution of the minimal completion time is T�

x ¼ Lða;xÞ since the last activity has a
zero duration. Fuzzy earliest starting times T�

i of activities can actually be computed using the same for-

ward propagation step as in the flexibly constrained PERT problem of Section 2.2. It is done by applying

the recursion equation (8) until the last activity is reached, using fuzzy number arithmetics. The main

difference is that the initial step is prescribed by (11) and that the fuzzy numbers Pi representing ill-known

processing times are bell-shaped fuzzy intervals, instead of being fuzzy thresholds. This step by step pro-

cedure is correct because the earliest starting time of tasks is an increasing function of the processing times.

However a difficulty arises when it comes to checking for critical activities, computing latest starting

times and floats. In the deterministic case, the backward recursion specified by Eq. (9) is carried out to
compute latest starting times of activities, and initialized by

tþx ¼ t�x ð12Þ
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since for criticality analysis, it is assumed that the project has minimal duration. Then floats can be

computed and are never negative. Floats of activities represent the minimal temporal shift of starting times

which do not alter the completion time of the project. Critical activities form one or several paths in

Cða;xÞ.
When durations pi are ill-known, it is tempting to compute the fuzzy latest starting times T þ

i using the

backward recursion method (9), intializing the process as

Tþ
x ¼ T�

x ð13Þ
and using fuzzy subtraction (Prade, 1979; MacCahon and Lee, 1988). However, as pointed out by

several authors (Dubois, 1983; Nasution, 1993; Rommelfanger, 1994; Hapke et al., 1994), this method

does not work for reasoning under uncertainty. The first mistake is to assume that the equality Tþ
x ¼ T�

x

does constrain the earliest starting time of the last task to be equal to its latest starting time. It is

indeed not equivalent to enforcing tþx ¼ t�x since two distinct variables may have the same distribution.

The second mistake is to use fuzzy subtraction on fuzzy numbers that are actually interactive. Namely,
it is actually wrong that Tþ

i ¼ gminminj2SuccðiÞTþ
j HPi because the latest starting time tþj already depends on

the value of pi since as soon as the constraint tþx ¼ t�x is enforced, tþx depends on variables pi. So, the

computed values of latest starting times will be too imprecise, and the determination of critical activities

cannot be made by comparing Tþ
i and T�

i . For instance, if the project has a single task of duration

p 2 ½1; 4�, the completion time distribution is t�x ¼ t�1 þ p 2 ½1; 4� too, and the latest starting time dis-

tribution computed by the procedure is ½1; 4�H½1; 4� ¼ ½�3;þ3� 6¼ 0. However, this task is surely critical

since tþ1 ¼ t�1 ¼ t�x � p ¼ 0.

MacCahon (1993) proposes to go back to standard critical path methods via defuzzification of the fuzzy
processing times. Kaufmann and Gupta (1988), Hapke et al. (1994) and Rommelfanger (1994) suggest

substitutes to the fuzzy subtraction, so as to improve the situation, but these techniques remain ad hoc. The

computation of distributions of latest starting times of activities cannot be achieved using elementary

techniques of fuzzy arithmetics, not even of interval arithmetics in the non-fuzzy case. It is clear that the

difficulty stems for the presence of intervals, be they fuzzy or not. Nasution (1993) resorts to symbolic

computations on the variable processing times. However this technique is unwieldy and highly combina-

torial.

Chanas and Kamburowski (1981) try and compute a criticality index for path and activities directly. One
idea for checking if a path is critical may be to compute the height of the intersection of the fuzzy length

LðCÞ of a path C in Cða;xÞ and the fuzzy completion time T�
x . It is clear that if LðCÞ \ T�

x is empty then C is

not critical. However the height of LðCÞ \ T�
x may be 1 for paths that are surely not critical. For instance

suppose three activities A1, A2, A3 where A1 precedes the two other ones. Assume that P1 ¼ ½1; 4�, p2 ¼ 2,

p3 ¼ 3. Then T�
x ¼ ½4; 7� and C ¼ ðA1;A2Þ has imprecise length ½3; 6� but it is clearly never critical whatever

the duration of task A1. The criticality of an activity i is similarly computed by comparing the fuzzy dis-

tribution of the maximal length Li of paths in Cða;wÞ crossing task i, and the fuzzy completion time T �
x . Li

can be computed as T�
i 
 s�i where T�

i is the distribution of the maximal length of paths in Cði;xÞ. This
index clearly suffers from the same defect.

MacCahon and Lee (1988) propose to compute fuzzy slack times of activities as T þ
i HT�

i obtained by the

forward and backward recursions, but the fuzzy variables restricted by Tþ
i and T�

i are interactive so that

what is obtained is only a rough imprecise approximation of the fuzzy range of the actual float of the

activity. Such a computation makes sense only if the fuzzy due-date and the fuzzy release date of the

projects are prescribed independently of each other (Dubois, 1983). Another view of criticality of activities

could be based on the notion of ‘‘most vital arcs’’ in fuzzy graph problems (Lin and Chern, 1993): the idea

would be to delete each activity in the network and see how it affects the fuzzy duration of the project. The
most critical task could then be the one that maximally decreases the project length (using a fuzzy number

ranking method).
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Actually, a correct solution to the whole problem of critical path analysis under fuzzy uncertainty cannot

be reached by mending existing algorithms. It requires a mathematically clean statement of the problem in

the setting of possibility theory. This step was taken by Buckley (1989). Given a PERT graph with n ac-

tivities, a tuple of n processing times X ¼ ða1; . . . anÞ is called a configuration. X characterizes a regular

PERT graph where p1 ¼ a1, p2 ¼ a2; . . . and pn ¼ an. In a given configuration X, piðXÞ denotes the value of
pi. In such a configuration, the earliest starting time t�i ðXÞ, the latest starting time tþi ðXÞ and float fiðXÞ of

activity i can be computed.

The degree of possibility that pi equals a prescribed value a is Pðpi ¼ aÞ ¼ lPiðaÞ.
Insofar as processing times of the various activities are not related to one another, the degree of pos-

sibility of a configuration X ¼ ða1; . . . anÞ is obtained by using the joint possibility distribution:

pðXÞ ¼ Pðp1 ¼ a1 and . . . and pn ¼ anÞÞ ¼ min
i¼1;...n

Pðpi ¼ aiÞ ¼ min
i¼1;...n

lPiðaiÞ: ð14Þ

On this basis, the calculation of the distribution of any relevant parameter, such as the latest starting

time or the float of some activity can be rigorously defined by projecting this joint distribution on the

domain of this parameter. Criticality indices can also be rigorously defined as the degree of possibility and

necessity (referring to the above joint possibility distribution) that a path or an activity is critical in the

usual sense, the latter being viewed as events in the usual sense.

It is useful to state the problem when the available knowledge about processing times is given by in-

tervals ½p�i; p�i �, as this is the core problem while the fuzzy problem is extension thereof. Then the possibility

distribution p takes the form of an hyperparallelipiped H of dimension n if there are n activities (other than
a and x). To our knowledge, a fullfledged criticality analysis of interval-valued activity networks has never

been published as topic of its own, although it sounds more realistic than deterministic models of projects.

Actually, it is a partially open problem. Let us define the parameters of interest in a rigorous way.

Definition (Criticality of a path). A path C in Cða;xÞ is said to be possibly critical (denoted PC) if and only

if there exists a configuration X in H where path C is critical. This path C is surely (necessarily) critical
(denoted SC) if and only if it is critical for all configurations X in H. This path is surely non-critical (or

impossibly critical, denoted SNC) if and only if it is critical in no configuration X in H.

It is rather obvious that checking if a path C is PC is easy: a characteristic property is that C is critical in

the configuration where processing times of activities on C take their maximal values, while they take their

minimal values for other activities. Otherwise, C is SNC. Similarly, a path is SC if and only if it is critical in

the dual configuration, where processing times of activities on C take their minimal values, while they take

their maximal values for other activities. In the case of non-degenerated intervals for all processing times,

an SC path is either unique or does not exist (Chanas et al., 2002). However there may be many PC paths.

For activities, the definitions for criticality are just the same.

Definition (Criticality of an activity). An activity i is is said to be possibly critical (denoted PC) if and only if

there exists a configuration X in H where activity C is critical. This activity i is surely (necessarily) critical
(denoted SC) if and only if it is critical in configurations X in H. This activity is surely non-critical (or

impossibly critical), denoted SNC) if and only if it is critical in no configuration X in H.

An activity is SC (resp. SNC) if and only if it belongs to all (resp. no) PC paths. An activity is PC if it is

not SNC, hence belongs to at least one PC path. As a consequence there may be cases where no NC critical
path exist, but where (isolated) NC activities can nevertheless be found. For instance, activities a and x are

always NC. Calculating these NC activities, as well as PC activities, turns out to be computationally dif-

ficult; see Chanas and Zielinski (2002) for PC activities and paths, and Chanas et al. (2002) for SC activities.
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It is easy to check that only so-called extreme configurations (X such that pi ¼ p�i or p�i ) need be used in the

above definitions of criticality and there are 2n such configurations, hence possible combinatorial com-

plexity.

Now, the definition of earliest starting times, latest starting times and floats of activities in a given

configuration X, in terms of path lengths LXðCÞ, is:

t�i ðXÞ ¼ max
C2Cða;iÞ

LXðCÞ;

tþi ðXÞ ¼ max
C2Cða;xÞ

LXðCÞ � max
C2Cði;xÞ

LXðCÞ;

fiðXÞ ¼ max
C2Cða;xÞ

LXðCÞ � max
C2Cða;iÞ

LXðCÞ � max
C2Cði;xÞ

LXðCÞ:

Hence, the definition of the ranges T�
i , Tþ

i , Ui of earliest starting times, latest starting times and floats of

activities for interval-valued processing times is obvious:

T�
i ¼ ft�i ðXÞ;X 2 Hg; Tþ

i ¼ ftþi ðXÞ;X 2 Hg; Ui ¼ ffiðXÞ;X 2 Hg:

The actual computation of these imprecise quantities is studied in Fargier et al. (2000), Dubois et al.

(2001). It can be proved that these evaluations yield intervals that can be computed using extreme con-

figurations only. The calculation (done above) of the earliest starting times is straightforward because t�i ðXÞ
is a monotonically increasing function of X (in the wide sense). However the other quantities tþi ðXÞ and
siðXÞ are not monotonic in all processing times. The precise behavior of these functions in H is not so

simple to predict, which makes these parameters difficult to compute, as first noticed by Buckley (1989).

More precisely, Dubois et al. (2001) notice that tþi ðXÞ is monotonically increasing with respect processing

times of activities j 62 SUCCðiÞ, and j 6¼ i, while fiðXÞ is monotonically increasing with respect to processing

times of activities j 62 SUCCðiÞ, j 62 PREDðiÞ, and j 6¼ i. Again, the computational complexity of proce-

dures computing these quantities is potentially exponential. Fargier et al. (2000) provide optimal config-

urations where the least upper and the greatest lower bounds of T þ
i , Ui are attained, for networks having a

series–parallel topology.
The study of the precise relationships between the earliest starting times, latest starting times and floats

of activities, and the possible, sure, and impossible criticality notions defined above must still be carried out

for interval-valued activity networks. Generally, the range of the float cannot be directly computed from

the ranges of the earliest starting time and the latest starting time. However it is clear that when the float

interval of a task is the singleton {0}, then the activity is SC; if the lower bound of this interval is positive,

the activity is SNC. The situation in the interval-valued case thus considerably differs from the deterministic

(completely informed case).

These notions can be straightfowardly extended to the fuzzy case, where processing times are fuzzy
intervals and the membership function of the set of possible configurations is the possibility distribution p.

The fuzzy framework leads to rigorous definitions of degrees of possible, sure and surely impossible crit-

icality of paths and activities.

The degree of possible criticality of path C in Cða;xÞ is the degree of possibility of finding a configu-

ration where C is critical:

PCðCÞ ¼ sup
X:C critical in X

pðXÞ: ð15Þ

Now the companion quantity PNCðCÞ ¼ supX:C not critical in X pðXÞ, computing the possibility of the

contrary event is closely related to the degree of sure criticality SCðCÞ using the duality between necessity

and possibility in possibility theory. Namely, the degree of sure criticality of path C is:
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SCðCÞ ¼ 1 � PNCðCÞ ¼ 1 � sup
X:C not critical in X

pðXÞ;

while SNCðCÞ ¼ 1 � PCðCÞ, for the index of sure non-criticality of C. These notions can be expressed in

terms of level-cuts ðPiÞa of fuzzy processing times Pi, so as to reduce the computations to the interval-valued

case. Let Ga denote the interval-valued activity network with processing times ðPiÞa:

PCðCÞ ¼ supfa : C is PC in Gag:
SCðCÞ ¼ 1 � supfa : C is PNC in Gag:

Criticality indices for activities can be defined similarly. The degree of possible criticality of activity i is
the maximal degree of possible criticality for paths in Cða;xÞ containing i. The degree of sure criticality of

activity i is k if the maximal degree of possible non-criticality for paths in Cða;xÞ containing i is 1 � k. They

are usually not so easy to compute. Chanas and Zielinski (2001) give some results for the computation of

degrees of possible criticality, and Chanas et al. (2002) for indices of sure criticality.

Possibility distributions of latest starting times and floats of activities can be defined by means of the

extension principle applied to their path-based expressions given above, using the joint possibility distri-
bution of processing times p. See Fargier and Galvagnon (1999), Fargier et al. (2000), Dubois et al. (2003)

where preliminary work for computing fuzzy latest starting times and fuzzy floats is described, especially in

the case of series–parallel graphs. Again, a rigorous and complete criticality analysis of fuzzy PERT net-

works where fuzzy sets model ill-known processing times is still to be carried out, despite first results

mentioned above.

3.2. Optimal scheduling with limited resources when processing times are ill-known

Solving a scheduling problem under limited resources, when the goal is to minimize the makespan, comes

down to solving precedence conflicts on resources in the best way so as minimize the overall duration of the

set of corresponding activities. Once precedence conflicts are solved in some way, the problem comes down

to a fuzzy PERT like in the previous section, which is very simple in the deterministic case. More generally

other scheduling criteria can be used, even leading to a multicriteria scheduling problem (Blazewicz et al.,

1986). The literature is replete with techniques that solve deterministic scheduling problems under limited

resources. The most efficient ones combine disjunctive graph representations with metaheuristics for op-

timisation (simulated annealing, noticeably) (see van Laarhoven et al., 1992; Fortemps and Hapke, 1997 for
instance). Such methods yield good approximate solutions within reasonable time bounds, also in the fuzzy

case. However the deterministic scheduling problems under limited resources remain computationally

difficult.

In the interval-valued case, a fortiori in the fuzzy case, the unlimited resource scheduling problem sounds

already computationally non-trivial, but the fuzzy minimal duration is easy to get. It sounds more rea-

sonable to try and find a solution quickly, rather that looking for an optimal solution, all the more so when

data are ill-known. The idea is then to change fuzzy data into precise data via defuzzification, find solutions

using existing deterministic methods and compare solutions using fuzzy number comparison techniques
(see Appendix A). This kind of idea is at work in (Fortemps, 1997) for jobshop problems with fuzzy du-

rations. More specific problems like flow-shop are considered by MacCahon and Lee (1992). €OOzelkan and

Duckstein (1999) test the optimality of classical priority rules in the fuzzy setting, for very specific

scheduling problems, using defuzzified values of processing times. A more general setting for fuzzy

scheduling in uncertain environments and limited resources is the one of Hapke et al. (1994) where re-

newable resources are also ill-known (like manpower due to absent people). Mares (1989) even envisages

fuzzy sets of activities and fuzzy sets of preference constraints, to express uncertainty on the occurrence of

activities and their ordering.
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3.3. Scheduling under flexible constraints and ill-known processing times

Rather that minimizing the makespan, one may be more interested to find a schedule that satisfies local

constraints like in Section 2. When there are flexible constraints on temporal parameters such as starting
times or ending times of activities, and processing times are ill-known, the problem is one of flexibly

constrained scheduling under uncertainty. The aim is to find starting times of activities so as to maximize

the simultaneous satisfaction of constraints, whatever the actual processing times will turn out to be, within

the limits fixed by our knowledge in the form of fuzzy intervals. Since the uncertainty is non-probabilistic,

usual criteria such as the expected level of satisfaction of constraints do not apply. However, possibilistic

decision rules under uncertainty exist and can be applied here (see Dubois et al., 2001). Especially the

pessimistic decision rule (see Appendix A) may provide robust schedules.

In the non-fuzzy case the formulation of the problem sheds light on the type of solution it leads to and
the method of getting it. Suppose hard constraints Ri ¼ at least ri on the release dates of activities and

Di ¼ at most di on their ending dates thus forcing the activities to take place within intervals ½ri; di�. There

may also be a global temporal feasibility window ½r; d� that constrains the whole set of activities. Suppose

the processing times are known to belong to intervals Pi. The problem is now stated as follows: Find the

starting times ti of activities such that these activities take place within the feasiblity windows ½ri; di� and the

whole project starts after t ¼ r and ends not after t ¼ d, whatever the actual values of pi 2 Pi turn out to be.
Clearly it comes down to solving a regular constrained scheduling problem, working with maximal values

of pi 2 Pi for the sake of robustness. These maximal values are pessimistic predictions of processing times.
The corresponding fuzzy optimal scheduling problem has been formulated in (Dubois et al., 1995).

Consider a partially ordered set of activities. The performance of each activity i requires an ill-known

processing time Pi like in Section 3.1. For simplicity, suppose there is only a global fuzzy release date and a

global fuzzy due-date, respectively R and D like in Section 2. The formulation of the problem in terms of

the pessimistic possibilistic preference functional extends the above non-fuzzy robust approach: find choices

of starting times t ¼ ðta; . . . ; txÞ such that for any choice p ¼ ðpa; . . . ; pxÞ of processing times compatible

with fuzzy intervals Pi, the fuzzy window constraints be satisfied to the best extent. The following problem

can be stated:

sup
ta;...;tx

inf
p

maxð1 � min
i

lPiðpiÞ;minðlDðtxÞ; lR;ðtaÞÞÞ

with maxC2Cða;xÞ
P

i2C pi ¼ tx � ta. Note that other starting times result from the determination of the

launching time ta and the ending time, as well as the processing times determined by solving the above
problem.

The pessimistic preference functional is clearly seen in the ‘‘inf-max’’ expression. Letting x ¼
maxC2Cða;xÞ

P
i2C pi the objective function can be reformulated equivalently as

sup
ta;...;tx

inf
x

maxð1 � sup
p

min
i

lPiðpiÞ;minðlDðtxÞ; lR;ðtaÞÞÞ

with maxC2Cða;xÞ
P

i2C pi ¼ x ¼ tx � ta. But, supp mini lPiðpiÞ with constraint maxC2Cða;xÞ
P

i2C
pi ¼ x yields

the fuzzy duration of the project say a fuzzy number L. Now the problem reads

cons ¼ sup
ta;tx

inf
x

maxð1 � lLðxÞ;minðlDðtxÞ; lR;ðtaÞÞÞ

with x ¼ tx � ta. A technical lemma can be established:

Lemma. With continuous membership functions, and a bounded-support L, the following identity holds when
x ¼ tx � ta:

sup
ta;tx

inf
x

maxð1 � lLðxÞ;minðlDðtxÞ; lRðtaÞÞÞ ¼ inf
x

maxð1 � lLðxÞ;lDHRðxÞÞ:
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Proof. Letting tx ¼ xþ ta it comes

cons ¼ sup
ta

inf
x

maxð1 � lLðxÞ;minðlDðxþ taÞ; lRðtaÞÞÞ

¼ sup
ta

minðinf
x

maxð1 � lLðxÞ; lDðxþ taÞÞ;minðinf
x

maxð1 � lLðxÞ; lRðtaÞÞÞÞ

¼ sup
ta

minðinf
x

maxð1 � lLðxÞ; lDðxþ taÞÞ; lRðtaÞÞ since inf
x

1 � lLðxÞ ¼ 0:

Moreover lDðxþ taÞ is a continuous decreasing function, and 1 � lLðxÞ is a continuous function that de-

creases to 0 and then increases again to 1. Let l� be a value in the core of L. The infimum of

maxð1 � lLðxÞ; lDðxþ taÞÞ is attained for a value x� P l� such that 1 � lLðx�Þ ¼ lDðx� þ taÞ. Hence this is
also the supremum of minð1 � l�L;þ1ÞðxÞ, lDðxþ taÞÞ, where the fuzzy threshold �L;þ1Þ has an increasing

membership function equal to the fuzzy complement of the decreasing part of L. Hence we can compute

cons ¼ sup
ta

minðsup
x

minð1 � l�L;þ1ÞðxÞ; lDðxþ taÞÞ; lRðtaÞÞ

¼ sup
x

minð1 � l�L;þ1ÞðxÞ; sup
ta

minðlDðxþ taÞÞ; lRðtaÞÞ ¼ sup
x

minð1 � l�L;þ1ÞðxÞ; lDHRðxÞÞ

¼ inf
x

maxð1 � lLðxÞ; lDHRðxÞÞ: �

The above lemma tells us that the degree of consistency of the problem is the degree of inclusion of the

fuzzy length of the project in the fuzzy time window where the project must take place. This expression is a

typical pessimistic preference functional. The proof is also instructive as it suggests that the practical

solving of this problem comes down to one of simple scheduling with fuzzy constraints on ending and

launching times and processing times as well. The latter fuzzy constraints on processing times are of the

form �Pi;þ1Þ that is consider pessimistic (higher) values of processing times (see also Dubois et al., 1995).

Hence the optimal solution can be obtained by the following procedure:

(1) Compute the fuzzy length L of the project by forward propagation of fuzzy durations P 0
i ¼�Pi;þ1Þ,

which can be viewed as fuzzy pessimistic predictions.

(2) Compute the fuzzy span of the allowed horizon of the project. This is DHR.

(3) The degree of consistency of the problem is

cons ¼ sup
x

minð1 � l�L;þ1ÞðxÞ; lDHRðxÞÞ:

If cons ¼ 1, the problem with durations equal to the maximal values of supportðPiÞ and strict con-

straints coreðRÞ and coreðDÞ is feasible. Hence the fuzzy problem is surely feasible.

(4) If cons < 1, defuzzify R by letting ta ¼ l�1
R ðconsÞ.

(5) Compute pessimistic estimates (predictions) of durations as pi ¼ l�1
�Pi ;þ1ÞðconsÞ using the fuzzy comple-

ment of the decreasing side of Pi.

Clearly, we are back to the problem of flexible scheduling and we generalize the cautious version of

constrained scheduling under interval-valued processing times outlined above.

Further iterations may be useful after step 5 so as to find the unique Pareto-optimal solution, as sug-

gested by Dubois and Fortemps (1999). The case where local fuzzy due dates and release dates constrain the

activities individually is a matter or further study (see Dubois et al., 1995).

The fact that the increasing parts of the fuzzy processing times play no role in pessimistic solution of the

flexibly constrained scheduling problem under uncertainty should not be surprizing if we compare to its

non-fuzzy version. Namely, consider a solution which prescribes starting dates ti of activities i. A prece-
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dence constraint requiring activity i before activity k will be certainly verified only to a degree, due to ill-

known processing times. This degree can be computed as:

Nðpi6 tk � tiÞ ¼ inff1 � lPiðuÞ : pi > tk � tig ¼ l�Pi ;þ1Þðtk � tiÞ: ð16Þ

Only an increasing membership function equal to the fuzzy complement of the decreasing part of pi is used.

This degree is all the smaller as interval ½ti; tk� is small, since the smaller this interval, the more unlikely the

activity i can fit in.

Not so many papers consider flexibly constrained scheduling problems with fuzzy processing times of

activities. The use of possibility theory in jobshop scheduling has been discussed Kerr and Walker (1989)

and (Dubois, 1989), in which local evaluations are used to sequence operations on machines; Dubois et al.

(1995) cast the above framework in the job-shop scheduling context and bridge the gap with constraint-

directed propagation rules from Artificial Intelligence. Stanfield et al. (1996) compute the minimum ready
time and optimal sequence of n jobs with fuzzy service times and due dates, by fixing acceptance levels.

Litoiu and Tadei (2000) extend their approach to periodical real-time task scheduling so as to handle fuzzy

processing times, by means of a fuzzy ranking method. The aim is to assign priorities to tasks so as to

satisfy fuzzy due-dates.

4. Conclusion: The potential of possibility theory in scheduling problems

Possibility theory offers tools for a flexible extension of the constraint-directed approach to scheduling so

as to introduce preference notions, as well as means of capturing uncertainty on data such as processing

times, when this uncertainty stems from incomplete knowledge.

The flexible constraint approach has specificities which make it attractive in scheduling problems:

• It easily lends itself to the expression of non-compensatory local criteria. Flexible constraints may be

more expressive than single global objective functions found in the literature. The minimization of the

makespan can also be encoded as a particular fuzzy constraint.
• It presupposes that violating some constraints cannot be compensated by the satisfaction of other ones.

The aim is not cost minimization, but a balanced handling local delays. This remark clearly tells the flex-

ible constraint approach from additive multicriteria methodologies.

• It is in full agreement with the constraint-directed approach. Existing constraint propagation tools can

be directly adapted, either by directly propagating preference profiles, or by solving a sequence of stan-

dard constraint satisfaction problems via level-cuts of the fuzzy sets obtained by fixing aspiration levels

in a dichotomy technique.

• the complexity of the flexible constraint satisfaction method is not much higher than the complexity of
standard constraint based methods, and can be applied to problems of similar size.

Actually, the optimal solutions to a flexible scheduling problem can be viewed as the feasible solutions of

a regular constrained scheduling problem obtained by minimally relaxing the constraints defined by the

cores of the fuzzy sets. This relaxation is determined by the level of consistency of the problem. The aim of a

flexible scheduling problem is thus to achieve a trade-off between local specifications, so as to ensure the

existence of a balanced solution. Flexible constraints enable two pitfalls of constraint-directed satisfaction

to be obviated: the situation when the problem is overconstrained and the inconsistency is discovered after
many computational steps, and the situation when the problem underconstrained and a solution is chosen

at random when checking consistency. Some computational studies indicate that the introduction of local

preference in constraint-directed scheduling often helps finding a better solution faster than standard
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constraint-based modelling (Fargier, 1994, 1997). More computational experiments need to be carried out

to assess the practical benefits of flexibly constrained scheduling.

Possibility theory also provides a simple modelling of ill-known parameters, like activity durations.

Possibilistic uncertainty analysis is an extension of sensitivity analysis to intervals of various confidence

levels. It differs from a probabilistic analysis by not requiring extensive statistics nor independence as-
sumptions. Possibility-based critical path analysis only encounters part of the computational difficulties

met by the probabilistic approach. For instance the computation of the distribution of earliest starting

times of activities and the ending time of a project is much simpler in the possibilistic approach than with

a probabilistic model. However the accurate determination of distributions of latest starting times and

floats and the criticality analysis is already a complex problem in the mere interval-valued case, which

seems to be very little known, if ever studied at all. In particular, the standard view according to which

critical activities form at least one critical path from the beginning task to the ending task must be given

up, because there may exist isolated surely critical tasks, while a surely critical path may fail to exist
(Chanas et al., 2002).

The joint handling of flexible constraints and uncertainty can be achieved in possibility theory using

specific preference functionals that generalize the maximin and maximax criteria of decision-making under

ignorance, focusing on pessimistic or optimistic plausible predictions of activity durations.

Appendix A. Basic notions of fuzzy set and possibility theory

Basic definitions of fuzzy set and possibility theory are given for a better understanding of the main text.

More details can be found in Dubois and Prade (1980, 1988, 2000), for instance.

A fuzzy set A is a subset of a referential set U whose boundaries are gradual rather than abrupt. More

formally: The membership function lA of a fuzzy set A assigns to each element u 2 U its degree of mem-

bership lAðuÞ usually taking values in ½0; 1� (if the referential is numerical). The core of A is the set

cðAÞ ¼ fu; lAðuÞ ¼ 1g. It gathers the prototypes of A. The height hðAÞ of a fuzzy set A is the maximal degree

of membership of elements in U to A. If this height is less than 1, the core of A is empty. The cut of A at level

a (or a-cut) is the standard (non-fuzzy, or crisp) set Aa of elements in U whose degree of membership to A is
atleast a. These level-cuts form a family of nested sets which are the horizontal representation of a fuzzy set.

The support of A is the set sðAÞ ¼ fu; lAðuÞ > 0g. It contains both the prototypes of A and its peripheral

elements (elements of the boundary 0 < lAðuÞ < 1Þ. Only prototypes of ‘‘not A’’ (lAðuÞ ¼ 0) are rejected.

The complement of the fuzzy set A in U is denoted Ac and its membership function is lcA ¼ 1 � lA. The

union and intersection of fuzzy sets are obtained by respectively taking the maximum and the minimum of

membership degrees of the each element of U in each of the fuzzy sets. These two operations commute with

cuts.

A possibility distribution (Zadeh, 1978) is the membership function of a fuzzy set A, attached to single-
valued variable x. It is denoted px ¼ lA and represents the set of more or less plausible, mutually exclusive

values of x. It is supposed that A is not empty, i.e. pxðuÞ ¼ 1 for at least one value u. A possibility dis-

tribution is similar to a probability density. However, pxðuÞ ¼ 1 only means that x ¼ u is a plausible sit-

uation, which cannot be excluded. A degree of possibility can be viewed as an upperbound of a degree of

probability, at the mathematical level. A numerical possibility distribution encodes a family of probability

functions.

Possibility theory encodes incomplete knowledge while probability theory accounts for random, accu-

rately observed, phenomena or reflects a subjective betting behavior. In particular, the complete ignorance
about x is expressed by pxðuÞ ¼ 1, for all u 2 U . Numerical possibility theory is in agreement with prob-

ability theory, except for the Bayesian credo stating that any state of knowledge can be represented by a

single probability distribution.
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The possibility of an event ‘‘x 2 E’’, denoted by Pðx 2 EÞ is the height of the intersection between the

fuzzy set A such that px ¼ lA and the set E:

Pðx 2 EÞ ¼ sup
u

minðpxðuÞ; lEðuÞÞ ¼ sup
u2E

pxðuÞ:

This degree evaluates the extent to which ‘‘x 2 E’’ is ‘‘possibly’’ true, or to what extent the proposition
‘‘x 2 E’’ is consistent with the item of information ‘‘x 2 A’’ modelled by px ¼ lA. Note that in the left part of

the previous equation, E can be a fuzzy set.

The dual measure of necessity of ‘‘x 2 E’’, denoted Nðx 2 EÞ evaluates the extent to which the fuzzy set A
is fully included in the core of E, in other words, to what extent the proposition ‘‘x 2 E’’ is certainly true,

i.e., implied by the item of information ‘‘x 2 A’’:

Nðx 2 EÞ ¼ inf
u

maxð1 � pxðuÞ; lEðuÞÞ ¼ inf
u 62E

1 � pxðuÞ ¼ 1 � Pðx 2 EcÞ

where Ec is the complement of E. Indeed, Nðx 2 EÞ ¼ 1 if and only if the support of A included in the core

of E : x 2 E is sure if and only if all the more or less possible values of x are amidst the values fully satisfying

the fuzzy constraint x 2 E.

A fuzzy interval is a fuzzy set of the real line whose cuts are intervals. Cuts are closed intervals when the

membership function is upper semi-continuous. The simplest representation of a fuzzy interval uses a

trapezoidal membership function (Fig. 2) defined by linear interpolation from two nested intervals
½a; b� � ½c; d� respectively forming the core and the support of the fuzzy set. A fuzzy interval with an in-

creasing (b ¼ d ¼ þ1) or a decreasing (a ¼ c ¼ �1) membership function is called a fuzzy threshold.

Given a real-valued variable x, a fuzzy interval A restricting the possible values of x several fuzzy

thresholds ð�1;A�, ð�1;A½; ½A;þ1Þ; �A;þ1Þ can be defined:

lð�1;A�ðrÞ ¼ Pðr6 xÞ ¼ sup
uP r

lAðuÞ;

lð�1;A½ðrÞ ¼ Nðr6 xÞ ¼ inf
u<r

1 � lAðuÞ;

l½A;þ1ÞðrÞ ¼ PðrP xÞ ¼ sup
u6 r

lAðuÞ;

l�A;þ1ÞðrÞ ¼ NðrP xÞ ¼ inf
u>r

1 � lAðuÞ;

which are membership functions of fuzzy sets of numbers respectively possibly less than x, certainly less
than x, possibly greater than x and certainly greater than x (cf. Fig. 2).

Fig. 2. (a) Numbers possibly/certainly less than A. (b) Numbers possibly/certainly greater than A.
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Real-valued functions can be extended to interval arguments. Let A and B be two real-valued intervals

restricting the possible values of two logically independent variables x and y. Given a two place function

f ðx; yÞ, f ðA;BÞ is defined to be ff ða; bÞ; a 2 A; b 2 Bg. If A and B are fuzzy intervals, the membership

function of f ðA;BÞ is defined by the extension principle:

lf ðA;BÞðzÞ ¼ sup
x;y:z¼f ðx;yÞ

minðlAðxÞ; lBðyÞÞ:

It can be reconstructed via interval computation from cuts, since in general the a-cut of f ðA;BÞ is

f ðAa;BaÞ.
For instance, the sum A
 B and difference AHB of two fuzzy intervals are such that:

lA
BðzÞ ¼ sup
x

minðlAðxÞ; lBðz� xÞÞ;

lAHBðzÞ ¼ sup
x

minðlAðxÞ; lBðzþ xÞÞ:

Similarly, the possibility distributions attached to minðx; yÞ and maxðx; yÞ changing f into the minimum

and the maximum can be derived via the extension principle. As shown on Fig. 3 the fuzzy intervalgmaxmaxðA;BÞ may be different from both A and B, and similarly for gminminðA;BÞ. The extended minimum and

maximum satisfy most usual other properties for instance,

gminminðA;AÞ ¼ gmaxmaxðA;AÞ ¼ A ðidempotenceÞ;gmaxmaxðA;BÞ 
 C ¼ gmaxmaxðA
 C;B
 CÞ;

or yet the mutual distributivity of gminmin and gmaxmax. However, computing the possibility distribution induced

by more general functions can be difficult when these functions are not monotonic, or when the variables

restricted by fuzzy intervals are linked. Applying extended basic operations like sums and products to
compute f ðA;BÞ is not always possible even if function f can be expressed as such (like for the latest starting

times and floats of activities in Section 3).

Comparing fuzzy intervals is different from computing the extended minimum and maximum. It is a

controversial matter, as witnessed by an abundant and heterogeneous literature. (See Bortolan and Degani,

1985; Chen and Hwang, 1992; Dubois et al., 2000 for surveys.) Only the most widely acknowledged

techniques are recalled here.

Two situations must be distinguished: the case when the aim is to get a complete ranking of fuzzy in-

tervals, and the case when the aim is just to describe their relative position. For instance, the problem of
finding the best sequencing of activities by ranking fuzzy makespans pertains to the first situation. The

second situation makes sense if the aim is only to know degrees of possible or sure dominance between

fuzzy schedules so as to estimate their relative worth.

Fig. 3. Maximum and minimum of two fuzzy intervals A and B.
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Ranking fuzzy intervals is usually done via so-called defuzzification. The name ‘‘defuzzification’’ is

misleading. Strictly speaking it means ‘‘making a fuzzy set not fuzzy’’; it should yield a set. However, people

use the word to mean ‘‘find a scalar substitute to a fuzzy quantity’’. There are many defuzzification pro-

cedures, which have been proposed without other convincing motivation than practical convenience.

Ranking fuzzy intervals then comes down to ranking their scalar substitutes. However, one of them,
proposed by Yager (1981) turned out to be the most natural, although not so often used: the neutral scalar

substitute sðAÞ of a fuzzy interval A is defined by

sðAÞ ¼ 1

2

Z 1

0

ða�a þ aþa Þda

where ½a�a ; aþa � is the a-cut of A. This definition can be retrieved using the area compensation method

(Fortemps and Roubens, 1996). Considering the set of all probability functions dominated by the possi-

bility function induced by lA, sðAÞ is also the expectation of the probability distribution which lies at the

center of gravity of that set. The major property of sðAÞ is its linearity: sðA
 BÞ ¼ sðAÞ þ sðBÞ and

sðq � AÞ ¼ qsðAÞ, for any real q.

More generally, alternative scalar substitutes of A preserving linearity can be obtained by using a convex

combination skðAÞ obtained by the integral of ka�a þ ð1 � kÞaþa , where k is a degree of pessimism, prescribed
by the user, like in Hurwicz criterion in decision-making. The interval ½s1ðAÞ; s0ðAÞ� is the mean interval of A
(Dubois and Prade, 1987). It is the range of the expectations of probability functions dominated by the

possibility function induced by lA and its middle point is sðAÞ.
If the problem is to describe the relative location of two fuzzy intervals A and B, one may compute the

possibility that there exists a value of x smaller than A and greater than B (Baas and Kwakernaak, 1977):

PðAPBÞ ¼ sup
x

minðlð�1;A�ðxÞ; l½B;þ1ÞðxÞÞ:

This purely metrical index, and its dual one NðA > BÞ ¼ 1 � PðBPAÞ are the direct fuzzy extension of

interval orderings based on the following idea: ½a; b�P ½c; d� if and only if aP d. Then, Pð½c; d�P ½a; b�Þ ¼ 0

and Pð½a; b�P ½c; d�Þ ¼ 1. If ½a; b� \ ½c; d� 6¼ ø, then Pð½c; d�P ½a; b�Þ ¼ Pð½a; b�P ½c; d�Þ ¼ 1, a form of in-

difference. The properties of this index extend to the valued case the properties of interval orderings (Fodor

and Roubens, 1994; Pirlot and Vincke, 1997).

Lastly, possibility theory offers a framework similar to, but distinct from, utility theory for decision-

making under uncertainty. Restricting ourselves to the classical decision-theoretic setting, where a decision
is modelled as a function d from a state space S to a set of consequences X, the knowledge of the system

state is supposed to be defined by a possibility distribution p on S, the decision-maker preferences among

consequences are described by another function l : X ! ½0; 1� (lðxÞ is a kind of utility degree of conse-

quence x). Then two preference functionals construed as possibility and necessity evaluations can be used

for rating a decision d:

• a pessimistic function: u�ðdÞ ¼ inf s2S maxð1 � pðsÞ; lðdðsÞÞÞ;
• an optimistic function: u�ðdÞ ¼ sups2S minðpðsÞ; lðdðsÞÞÞ.

Noticing that a state s such that pðsÞ ¼ 1 is viewed as a plausible state, u�ðdÞ measures the extent to

which decision d has good consequences in all plausible states. In particular if the knowledge is absent then

pðsÞ ¼ 1, 8s, and u�ðdÞ ¼ inf s2S lðdðsÞÞ; this is Wald pessimistic criterion which is obtained as a special case.

On the contrary, u�ðdÞ is high if there exists a plausible state where decision d produces a good consequence.

These criteria differ from expected utility based on a probability distribution Prob on states, of the form

uðdÞ ¼ RsProbðsÞ � lðdðsÞÞ, for two reasons:
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• they presuppose less information about the state;

• they make sense for one-shot decisions, or successive decisions whose individual utilities do not cumulate

(unlike costs, for instance).

The rationality of these criteria and of possibility theory as an observable uncertainty theory has been

laid bare via an act-based axiomatisation in the Savage style (Dubois et al., 2001), in a finite setting.
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